IN HARM’S WAY:
Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment

Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste

Environmental Integrity Project, Earthjustice and Sierra Club
August 26, 2010
Jeff Stant, Project Director, Editor and Contributing Author
ACKNOWLEDGEMENTS

This report was a project of the Environmental Integrity Project with active support from Earthjustice and Sierra Club.

Jeff Stant, Director of Environmental Integrity Project’s Coal Combustion Waste Initiative served as the Director of the project and senior editor of the report as well as a contributing author.

Lisa Evans, Senior Administrative Counsel for Earthjustice, served as a contributing editor and provided input and direction on the content of the report.

Eric Schaeffer, Executive Director of the Environmental Integrity Project (EIP), provided oversight central to the direction of investigations and contents of the report.

About the Authors of Site Investigations:

J. Russell Boulding is an environmental consultant with 40 years experience in environmental site characterization, soil and groundwater contamination assessment, soil, geologic and hydrogeologic investigations, and contaminant geochemistry. Russ is a former staff scientist with the Environmental Defense Fund specializing in coal and water resource issues. He has assessed the environmental impacts of coal combustion waste disposal since the late 1980s. He is author of USEPA’s Groundwater and Wellhead Protection Handbook (EPA /625/R-94-001), and two-volume Subsurface Characterization and Monitoring Techniques Guide (EPA/625/R-93/003a&b) and author of five ASTM standards related to environmental site characterization. In addition to writing investigations of fourteen of the sites, Russ served as chief technical editor of the report. Mr. Boulding holds a Masters of Science in water resources management from the University of Wisconsin.

Mark A. Quarles, P.G., is an environmental consultant with 25 years experience in the following: hazardous waste management and permitting; landfill siting and design; hydrogeologic investigations; multi-media environmental auditing; water and wastewater permitting; municipal and industrial stormwater permitting; and soil/groundwater remediation. Mark has significant experience in coal combustion waste characteristics, their migration potential in the environment, toxicity of constituents of concern, and sampling programs to determine their extent in soil, surface water and groundwater. Mark is a Licensed Professional Geologist in Tennessee who wrote investigations for twelve of the sites in the report.

Brian Wright has eleven years of experience working on coal combustion waste issues. He is currently earning his Masters of Science in Environmental Science and Masters of Public Affairs from the Indiana University School of Public and Environmental Affairs.

Amy Ueda is currently earning her Masters of Science in Environmental Science and Masters of Public Affairs from the Indiana University School of Public and Environmental Affairs. Brian and Amy coauthored investigations of six sites in the report.

EIP Attorney Kimberly Wilson authored investigations of four sites in the report.

EIP Attorney Lisa Widawsky authored the largest investigation of a site in the report which included several site and file room visits. Kimberly and Lisa also performed extensive text editing of the report.

Adam Engelman of EIP authored an investigation of one site, constructed the report’s tables and performed layout and design of the report.
Donna Lisenby and Eric Chance of Appalachian Voices authored an investigation of one site in the report.

R. John Dawes of EIP was the chief investigator of private and public wells in the site reports, constructed maps and exhibits and assisted in report editing.

In addition, EIP, Earthjustice and Sierra Club wish to thank the following individuals and organizations for their contributions to the report: Traci Barkley of Prairie Rivers Network in Illinois for her assistance in obtaining information on Illinois sites in the report, Tammy Thompson of WE-CARESOS, for help in investigation of the Joliet 9 site in Illinois, Chris Borello of Concerned Citizens of Lake Township and Dr. Julie Weatherington-Rice for their substantive assistance in research of the Uniontown site in Ohio, Justine Thompson and staff of GreenLaw for their investigation of Georgia coal ash sites, and Lisa Marcucci of EIP for her repeated assistance in retrieving information on Pennsylvania sites in the report.
In Harm’s Way

Table of Contents

EXECUTIVE SUMMARY vi

NATIONAL COAL COMBUSTION WASTE DAMAGE CASES MAP xiii

TABLE 1: SUMMARY OF DAMAGE CASES xv

TABLE 2: CCW DAMAGE TO WATER QUALITY xxiv

DAMAGE CASES

1. Flint Creek Power Plant, American Electric Power d/b/a SWEPCO – Gentry, AR
2. Independence Steam Station, Entergy d/b/a Arkansas Power & Light – Newark, AR
3. Montville Generating Station, NRG Energy/Montville Power LLC – Montville, CT
4. C.D. McIntosh, Jr. Power Plant, City of Lakeland – Lakeland, FL
5. George Neal Station North, Berkshire Hathaway d/b/a MidAmerican Energy – Sergeant Bluff, IA
6. George Neal Station South, Berkshire Hathaway d/b/a MidAmerican Energy – Salix, IA
7. Lansing Power Station, Alliant Energy d/b/a Interstate Power & Light – Lansing, IA
8. Joliet 9 Generating Station, Edison International d/b/a Midwest Generations EME LLC – Joliet, IL
9. Marion Plant, Southern Illinois Power Cooperative – Marion, IL
10. Venice Power Station, Ameren Energy d/b/a AmerenUE – Venice, IL
11. Mill Creek Station, E.ON d/b/a Louisville Gas and Electric Company – Louisville, KY
12. Shawnee Fossil Plant, Tennessee Valley Authority – West Paducah, KY
13. Spurlock Power Station, East Kentucky Power Cooperative – Maysville, KY
15. Dolez Hills Power Station, Cleco Power – Mansfield, LA
16. Rodemacher Power Station, Cleco Power – Lena, LA
17. J.R. Whiting Generating Plant, CMS Energy d/b/a Consumers Energy – Erie, MI
18. Dan River Steam Station, Duke Energy – Eden, NC
19. Antelope Valley Station, Basin Electric Power Cooperative – Beulah, ND
20. Leland Olds Station, Basin Electric Power Cooperative – Stanton, ND
21. Sheldon Station, Nebraska Public Power District – Hallam, NE
22. Cayuga Generation Plant, AES – Lansing NY
25. Industrial Excess Landfill Superfund Site, Hyman Budoff/Merle & Charles Kittinger – Uniontown, OH
27. Northeastern Station, American Electric Power d/b/a Public Service Co. of Oklahoma – Oologah, OK
28. Boardman Plant, Portland General Electric (PGE) – Boardman, OR
29. Bruce Mansfield Power Station, FirstEnergy – Shippingport, PA
30. Hatfield’s Ferry Power Station, Allegheny Energy – Masontown, PA
31. Big Stone Power Plant, Otter Tail Power – Big Stone, SD

Page iv
32) Cumberland Steam Plant, Tennessee Valley Authority – Cumberland City, TN
33) Gallatin Fossil Plant, Tennessee Valley Authority – Gallatin, TN
34) Johnsonville Fossil Plant, Tennessee Valley Authority – New Johnsonville, TN
35) Fayette Power Project, Lower Colorado River Authority – La Grange, TX
36) Clinch River Plant, American Electric Power d/b/a Appalachian Power – Cleveland, VA
37) Glen Lyn Plant, American Electric Power d/b/a Appalachian Power – Glen Lyn, VA
38) Columbia Energy Center, Alliant Energy d/b/a Wisconsin Power & Light Company – Pardeeville, WI
39) Oak Creek Power Plant, Wisconsin Energy d/b/a Wisconsin Electric Power Co. – Oak Creek, WI

TABLE 3: COAL COMBUSTION WASTE HEALTH EFFECTS
EXECUTIVE SUMMARY

An investigation led by expert hydrogeologists has identified 39 more coal combustion waste (CCW) disposal sites in 21 states that have contaminated groundwater or surface water with toxic metals and other pollutants. Their analysis is based on monitoring data and other information available in state agency files and builds on a report released in February of 2010, which documented similar damage at 31 coal combustion waste dumpsites in 14 states.\(^1\) When added to the 67 damage cases that the U.S. Environmental Protection Agency (USEPA) has already acknowledged, the total number of sites polluted by coal ash or scrubber sludge comes to at least 137 in 34 states. This total represents nearly a three-fold increase in the number of damage cases identified in EPA's 2000 Regulatory Determination on the Wastes from the Combustion of Fossil Fuels.\(^2\)

Drinking Water Standards Routinely Exceeded On-site, Sometimes by Orders of Magnitude

At every one of the 35 sites with groundwater monitoring wells, on-site test results show that concentrations of heavy metals like arsenic or lead exceed federal health-based standards for drinking water. For example, arsenic levels were above the 10 microgram per liter “maximum contaminant level” (MCL) at 26 of 35 sites, with concentrations reaching as high as 3,419 micrograms (over 341 times the standard) at the Hatfield’s Ferry site in Pennsylvania. Table A presents a summary of results for select contaminants.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th># Of Sites Above MCL</th>
<th>MCL</th>
<th>Highest Value (µg/L)</th>
<th>Site</th>
<th>Owner/Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Particles</td>
<td>2</td>
<td>15 pCi/L</td>
<td>128 pCi/L</td>
<td>Muskingum (OH)</td>
<td>American Electric Power d/b/a Ohio Power Company</td>
</tr>
<tr>
<td>Arsenic</td>
<td>26</td>
<td>10 µg/L</td>
<td>3,419 µg/L</td>
<td>Hatfield’s Ferry (PA)</td>
<td>Allegheny Energy</td>
</tr>
<tr>
<td>Beryllium</td>
<td>3</td>
<td>4 µg/L</td>
<td>23 µg/L</td>
<td>Gallatin (TN)</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>Cadmium</td>
<td>9</td>
<td>5 µg/L</td>
<td>850 µg/L</td>
<td>Bruce Mansfield [Little Blue] (PA)</td>
<td>FirstEnergy</td>
</tr>
<tr>
<td>Chromium</td>
<td>4</td>
<td>100 µg/L</td>
<td>225 µg/L</td>
<td>Northeastern (OK)</td>
<td>American Electric Power d/b/a Public Service Company of Oklahoma</td>
</tr>
<tr>
<td>Lead</td>
<td>11</td>
<td>15 µg/L</td>
<td>2,690 µg/L</td>
<td>Bruce Mansfield [Little Blue] (PA)</td>
<td>FirstEnergy</td>
</tr>
<tr>
<td>Selenium</td>
<td>11</td>
<td>50 µg/L</td>
<td>1,320 µg/L</td>
<td>Big Cajun 2 (LA)</td>
<td>NRG Energy d/b/a Louisiana Generating</td>
</tr>
<tr>
<td>Thallium</td>
<td>2</td>
<td>2 µg/L</td>
<td>10 µg/L</td>
<td>Uniontown (OH)</td>
<td>Hyman Budoff / Merle & Charles Kittinger</td>
</tr>
</tbody>
</table>
Drinking Water at Risk
Where off-site sampling of private wells occurred, contaminated drinking water was found in every case.

States do not generally require off-site monitoring of drinking water wells beyond the fenceline, even when there is documented contamination at the property boundary. Nevertheless, at four of the five sites examined in this report for which such monitoring data are available, test results show violations of the federal MCL or a federal or state health advisory at one or more wells used for drinking water. At the fifth site (Joliet 9 (IL)), although off-site monitoring data are limited and consequently violation of federal or state standards are not confirmed, at least 18 nearby drinking water wells were closed due to boron contamination.

Table B summarizes the four sites where testing of off-site private drinking water wells occurred.

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of Wells Contaminated/Abandoned</th>
<th>Contaminants</th>
<th>Response Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Mansfield [Little Blue] (PA)</td>
<td>22</td>
<td>aluminum, antimony, arsenic, barium, boron, cadmium, chromium (hexavalent), fluoride, iron, lead, manganese, selenium, and thallium</td>
<td>Alternative drinking water source provided</td>
</tr>
<tr>
<td>Cayuga Generation Plant (NY)</td>
<td>1</td>
<td>iron, lead, manganese, zinc.</td>
<td>Contaminated well purchased</td>
</tr>
<tr>
<td>Oak Creek Power Plant (WI)</td>
<td>12</td>
<td>molybdenum and boron</td>
<td>Provision of bottled water</td>
</tr>
<tr>
<td>Industrial Excess Landfill (OH)</td>
<td>Unknown number of private wells/11 off-site monitoring well clusters in residential areas were contaminated</td>
<td>antimony, arsenic, beryllium, cadmium, chromium, lead, nickel and thallium</td>
<td>100 homes placed on public water, Superfund action in progress</td>
</tr>
</tbody>
</table>

State records indicate the potential for more private wells to be contaminated.

Contaminated groundwater underneath at least 15 of the 39 sites is within two miles of private wells, according to monitoring data and public information on private well locations at the following CCW dumpsites: Independence (AR), Joliet 9 (IL), Lansing (MI), Cayuga (NY), Cardinal (OH), Gavin (OH), Muskingum (OH), Unipontown (OH), Northeastern (OK), Boardman (OR), Bruce Mansfield (PA), Hatfield’s Ferry (PA), Big Stone (SD), Fayette Power Project (TX), and Oak Creek (WI). Public information on private drinking water wells is often incomplete or out of date, but for at least eight of these CCW disposal sites – Joliet 9, Gavin, Lansing, Muskingum, Unipontown, Bruce Mansfield, Fayette Power Project and Oak Creek – there are 25 or more private drinking water wells at or within two miles of the site. At Joliet 9 and Unipontown, there are 90 or more private drinking water wells within a mile of the contaminated CCW disposal sites.
CCW contaminants may threaten public water wells or intakes, potentially requiring expensive cleanup.

Public wells that serve local communities have tremendous pumping capacities that often change the direction of groundwater flow and pull contaminated water into the public’s water supply. These pollutants must be removed at drinking water treatment plants, sometimes at great expense, to meet federal and state standards for safe drinking water. At least 18 of the 39 contaminated sites are located within five miles of a public groundwater well that could potentially be affected by CCW pollutants. In fact, there are at least five public water wells within a 5-mile radius of at least eight of those sites, namely: Flint Creek (AR); Montville (CT); Lansing (IA); George Neal North (IA); George Neal South (IA); Big Cajun (LA); Cardinal (OH); and Fayette Power Project (TX).

In several cases (e.g., Hatfield’s Ferry (PA), Gallatin (TN), and Johnsonville (TN)), CCW disposal sites are leaking their toxic cargo into rivers just upstream from intakes for public water systems. Often, metals like arsenic are discharged to rivers through adjacent groundwater. For example, monitoring wells in an aquifer that flows from the Hatfield’s Ferry (PA) site to the Monongahela River, less than half a mile away, have consistently measured arsenic at levels substantially above the MCL for the last five years. The contaminated groundwater discharges to the river are across from the water supply intake for the community of Masontown. Although historically, Pennsylvania has only required this public water system to test for arsenic every eight years, even in this limited testing, arsenic 2-3 times higher than the federal drinking water standard was found in the intake water at least twice since 2000. Groundwater discharges from CCW dumps may load drinking water sources with additional contaminants that must ultimately be removed from the water supply at public expense.

Illegal open dumping in violation of federal law may be occurring.

As many as 27 of the 35 sites where groundwater is contaminated may be illegal open dumps according to federal law, based on the high levels of metals found in the groundwater. When concentrations of certain pollutants exceed limits established under “Subtitle D” of the Resource Conservation and Recovery Act, the law requires that the operator close the dump, stop the flow of contamination, or obtain a waiver from the state if certain criteria are satisfied. For example, at the two sites described above where off-site drinking water wells have been contaminated with arsenic, and other sites where monitoring wells hundreds of yards downgradient of the ash have been contaminated with heavy metals, such as the Spurlock (KY), Hatfield’s Ferry (PA), and Northeastern (OK) sites, it is likely that federally prohibited “open dumping” has occurred. However, because open dumping regulations are part of subtitle D of the Resource Conservation and Recovery Act (RCRA), USEPA has no authority to enforce these standards. And even though states have the authority to enforce the prohibition, it appears that some states may have ignored the federal law and allowed illegal CCW dumps to operate and contaminate drinking water sources. The failure of states to enforce Subtitle D guidelines and the failure of plant operators to comply with those requirements indicate that “guidelines” under subtitle D of RCRA are insufficient to guarantee compliance with federal safeguards.

A Clear and Present Danger

Most damaged sites are still active and virtually all show recent evidence of contamination.

The contaminated CCW sites identified cannot be dismissed as a legacy of past practices that are no longer allowed today. Almost all of the facilities described in the report are active CCW disposal sites. The contamination is documented by recent data (from 2007 or later) at 32 of the 35 sites for which groundwater monitoring results are available. Even the few closed sites show that contamination often continues and even
worsens for generations after disposal ceases. For example, nearly 40 years after CCW disposal stopped at the Montville site (CT), average concentrations of arsenic in groundwater collected in 2007-2009 still exceed the MCL by 21 times and are higher than measurements taken ten years ago.

See No Evil, Hear No Evil

Many states require no groundwater monitoring at all.

The USEPA's 2000 Regulatory Determination noted that damages from CCW disposal sites were likely to be more widespread than the limited evidence available, due to the lack of groundwater monitoring at so many locations, especially coal ash ponds.iv Ten years later, this basic deficiency is still widespread.

Large coal ash-generating states like Alabama, Arizona, Georgia, Indiana, Ohio, Mississippi, Missouri, New Mexico, and Tennessee, to name a few, require no monitoring by law at coal ash ponds, at least while they are still in operation. Although data were available for the Lower Colorado River Authority's ash pond, most CCW disposal sites in Texas are exempt from any regulation or monitoring by the state. States whose regulations fail to require monitoring at coal ash ponds, both old and new, accounted for approximately 70% of the coal combustion waste generated nationwide in 2008.v A few of these states require monitoring only at new ponds, but since 75 percent of waste ponds are over 25 years old and 10 percent are over 50 years old, these state regulations leave a large and dangerous gap.vi

Many states, such as West Virginia, had limitations in their data that made further examination useless. Mississippi, Alabama, and Georgia either require no monitoring of their numerous ash ponds or monitoring only after the ponds have been closed, a rare event as most ponds are operated perpetually as “storage” sites. Monitoring data from state files in Georgia were so minimal that no assessment of impacts could be made.vii In Minnesota and Illinois, the state agency either refused to respond to our request for site files under the Freedom of Information Act or responded that no data were available, despite the presence of substantial data.viii The regulation of CCW in these states is so weak, or the staff so uncooperative, that it is often impossible to determine the extent of contamination at CCW sites.

Even when the groundwater is periodically sampled for pollutants, state agencies usually fail to look beyond CCW property boundaries to see how far that pollution has traveled. Off-site data were available at only 8 of the 35 sites evaluated in this report, despite clear evidence at 28 of the sites that contaminants had migrated away from coal ash ponds or landfills and toward the property boundary, and despite the fact that private or public drinking water wells were located downgradient and in close proximity to sources of contamination at many of the sites.

Cleanup: Whose Responsibility?

States agencies have not required polluters to cleanup even as contamination increases.

Power companies that own or operate coal ash disposal sites that contaminate groundwater ought to be required to clean them up. At 21 sites examined in this study, the evidence of groundwater contamination was serious enough to cause a state agency to require additional monitoring and some assessment of its causes. But as noted earlier, monitoring beyond the operator’s fenceline was rare, and only at five sites have polluters attempted to determine how far the contamination has traveled and at what concentrations (at Montville (CT), Joliet 9 (IL) Uniontown (OH), Venice (IL), and Oak Creek (WI)).

At no site did a state require the power company to stop the contamination, let alone clean it up. In isolated cases, citizens were provided with alternative sources of drinking water, or groundwater may have been
cordoned off from further use as drinking water. At Uniontown (OH), many domestic well users have been left to fend for themselves, even though monitoring data documented flows heavily contaminated with metals from the Industrial Excess Landfill moving toward their wells until such monitoring was stopped in 2004.

Too often, state agencies routinely accept claims by utilities that contaminant increases are the result of sampling anomalies, or that “nature” is responsible for heavy metal concentrations that are in fact far above background levels. Without further investigation of the flimsy evidence, states let operators return to reduced monitoring or stop monitoring altogether. And in the meantime, power companies may quietly purchase surrounding property where wells are contaminated, often without alerting the state or the community that a danger exists.

Ecological damages have been ignored or not addressed in Clean Water Act permits.

Four sites in the report demonstrate clear damage to off-site aquatic life that has been documented in peer-reviewed research or by government scientists:

- A U.S. Fish and Wildlife Service study found that aquatic life in Lake Erie was harmed by discharges with high selenium, arsenic and other metal concentrations from an ash basin at the J.R. Whiting Plant in Michigan.

- A catastrophic release in June 1967 from a coal ash pond at the Clinch River Plant in Virginia killed an estimated 217,000 fish a distance of 90.1 miles downstream and left the river ecosystem damaged for 35 years.

- Fly ash pond discharges containing high concentrations of cadmium and selenium from the Glen Lyn plant in Virginia resulted in dramatically reduced diversity of benthic macroinvertebrates in a mountain stream.

- High concentrations of metals and sediments from ash ponds at Wisconsin’s Columbia Station virtually eliminated aquatic insects for 2.2 miles downstream in the 1970s.

One of the most basic steps to protecting the off-site environment at CCW disposal sites is to set limits on the discharge of leachate or wastewater that are based on best available treatment standards, and which are also designed to protect rivers or streams. Few CCW sites are subject to Clean Water Act permits that monitor, much less limit, the full range of toxic metals that are discharged from CCW disposal sites. The limited data available show violations of the few discharge limits that are in place for the Hatfield’s Ferry and Bruce Mansfield sites in Pennsylvania and the Cardinal and Gavin sites in Ohio. Water quality criteria for metals in waters receiving discharges from the Bruce Mansfield and Gavin sites are being exceeded, but most waterways next to power plants are not monitored enough to make such determinations.

Of the 39 sites examined in our report, we found two, Gavin and Hatfield’s Ferry, where state agencies or operators examined the toxic effects of surface discharges on life in receiving waters. At both sites the discharges had adverse impacts on stream life. Yet PADEP has yet to require a treatment of the discharges at Hatfield’s that will stop the impacts. Furthermore despite the acutely toxic effect of those discharges on insect and fish life at Gavin, Ohio EPA has implemented relaxed surface water quality standards for beryllium, cadmium, chromium, lead, selenium, and other pollutants in Kyger Creek that appear to accommodate contaminated discharges from the ash landfill and closed ash pond.

Lax regulation of coal ash disposal sites that drain into large rivers ignores the long-term build-up of metals from such discharges in river ecosystems. But discharges from TVA’s Shawnee (KY), Gallatin, and Johnsonville...
(TN) sites along the Ohio, Cumberland, and Tennessee Rivers, respectively, the Big Cajun (LA) and Lansing (IA) sites along the Mississippi River or the Leland Olds (ND) site along the Missouri River, may contribute to harmful concentrations of metals that will be difficult to reverse.

Contamination Is a Warning for Use of Coal Ash as Structural Fill and Minefill

The finding of heavy metal contamination in onsite wells at all of the sites with groundwater monitoring should serve as a warning to USEPA and state regulators that use of coal ash as fill poses a real and substantial danger to drinking water sources. At fill projects, there are no liners or monitoring wells. Often fill sites are in or near residential areas where the contaminants need only travel a short distance to drinking water wells.ix

According to the American Coal Ash Association, use of coal ash as fill is pervasive -- over 20 million tons of coal ash per year are used as structural fill and minefill, representing more than a third of the total coal ash reused in the U.S.x In light of the significant contamination described in this report, the USEPA must require every fill site to employ effective safeguards, such as liners, monitoring, and leachate collection systems, to prevent off-site migration of dangerous contaminants.

Conclusion: Federally enforceable regulations are necessary to stop the growing harm

The threat to public health and damage to the environment documented in this report provides additional evidence of the accumulating harm from poorly regulated CCW disposal sites. The quantum leap in coal ash sites with documented contamination from seven sites identified by EPA in its Report to Congress in 1999xii to 137 sites today that are recognized by USEPA or presented in this and our previous report demonstrates that when adequate monitoring systems are established and their results are publicly accessible, contamination is invariably found at virtually every coal ash pond and landfill currently operating. Yet data from more than half (200) of the major disposal sites used by power plants in 25 states, could not be examined by EIP staff and experts, either because groundwater monitoring is lacking (8 states), agencies have refused to respond to Freedom of Information Act Requests (5 states), or due to time and resource constraints (12 states). Expecting monitoring data and other technical information at most CCW sites to be readily available to citizens when EIP’s professionals had such difficulties obtaining it is unrealistic.

Our examination shows that contamination of the environment and water supplies with toxic levels of arsenic, selenium, lead, cadmium, boron, molybdenum, and other pollutants is pervasive at America's CCW disposal sites because states are not preventing it. When contamination is documented repeatedly in monitoring at these sites, state agencies do not respond, or they allow operators and their hired consultants to explain it away without substantiation as somebody else’s fault, a sampling problem, or even nature’s doing. The states almost never require the extent of the contamination to be determined, rarely sample off-site wells – even nearby private drinking water wells that are in the path of the contamination – and almost never require that contamination be cleaned up.

The avalanche of data should give the federal government the information it needs to set federally enforceable standards that protect the public health, guarantee citizens the right to know what is being dumped in their drinking water and the ability to do something about it, and take action to order cleanup of the worst sites. The evidence is in. It is past time for the U.S. Environmental Protection Agency to act.

III. See 40 C.F.R. § 257.3-4 (providing that “(a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in accordance with paragraph (b) of this section.”).

IV. USEPA, supra note ii.

VII. Staff and volunteers of Greenlaw retrieved what monitoring data they could from files in Georgia for our researchers but it was so minimal that no assessment of impacts could be made.

VIII. Staff of the Prairie Rivers Network found substantial monitoring data when they visited the file room at the Illinois Environmental Protection Agency.

IX. According to EPA, large fill sites are associated with 7 proven damage cases and 1 potential damage case. (See, for example, the Battlefield Golf Course in Chesapeake, VA, where 1.5 million yards of fly ash were used as fill for construction of a golf course and Town of Pines, IN). 75 Fed. Reg. 35155.

NATIONAL COAL COMBUSTION WASTE DAMAGE CASES MAPS
These damage cases include the 39 documented in this report and the 31 cases described in: The Environmental Integrity Project (EIP) and Earthjustice. 2010.Out of Control: Mounting Damages from Coal Ash Waste Sites (Feb. 24, 2010), http://www.environmentalintegrity.org/news_reports/news_02_24_10.php.

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Owner</th>
<th>Wastes Present</th>
<th>Determination</th>
<th>Documented Impact</th>
<th>At Risk Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Flint Creek Power Plant</td>
<td>American Electric Power d/b/a SWEPCO</td>
<td>Coal fly ash, bottom ash, wastewater sludge, storm water runoff</td>
<td>Demonstrated damage to groundwater moving off-site (to an intermittent stream that drains to ash ponds which discharge to an off-site reservoir)</td>
<td>Groundwater downgradient of a CCW landfill has been contaminated with lead up to 33 times the MCL, barium, selenium, cadmium and chromium exceeding the MCL and iron, manganese and silver exceeding Arkansas groundwater standards. 2009 assessment monitoring found selenium at 3 times the MCL, and sulfate and TDS at 8 and 5 times the SMCL respectively in a well 360 feet downgradient from the landfill. A leachate seep with high metals discharges to a stream that drains to ash ponds which discharge to an off-site recreational reservoir without limits or monitoring of ash metals.</td>
<td>45 private wells are within a 2-mile radius of the plant. Six public wells are within a 5-mile radius of the plant.</td>
</tr>
<tr>
<td>AR</td>
<td>Independence Steam Station</td>
<td>Entergy d/b/a Arkansas Power and Light</td>
<td>Coal fly ash, bottom ash, process wastewaters</td>
<td>Demonstrated damage to groundwater moving off-site (to northern and eastern property lines)</td>
<td>The network of 34 monitoring wells at Independence has documented widespread contamination of groundwater with arsenic, cadmium and lead above MCLs. From 2002-2009, SMCLs have been exceeded repeatedly for iron, manganese, sulfate, pH and TDS in two downgradient CCW landfill wells closest to the eastern property line where flow off-site is magnified by farm irrigation pumping. Iron concentrations have been as high as 131 times the SMCL and arsenic is approaching the MCL in these wells.</td>
<td>25 irrigation wells and one drinking well are within a mile; 3 production wells have been used for drinking water at the plant.</td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Owner</td>
<td>Wastes Present</td>
<td>Determination</td>
<td>Documented Impact</td>
<td>At Risk Populations</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>CT</td>
<td>Montville Generating Station</td>
<td>NRG Energy / Montville Power, LLC</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to soil and groundwater moving off-site to surface water (discharging into the Thames River)</td>
<td>Multiple "areas of concern" (AOCs) exist in this urban site where coal ash has contaminated groundwater and soil with iron more than 1000 times the SMCL, and arsenic up to 26 times and beryllium more than 3 times the MCL and increasing in one well despite ash disposal stopping 40 years ago. There are two groundwater zones, and arsenic has been up to 8 times the MCL and beryllium exceeding the MCL in the zone that is supposed to attain potable standards. Lead has exceeded "pollutant mobility criteria," and arsenic and beryllium exceed "direct exposure criteria" in soils and cadmium, nickel, zinc and copper have been "constituents of concern" in an AOC in this zone.</td>
<td>The area immediately west of the Plant is densely populated. Documents suggest over 300 private wells are likely within 2 miles and over 40 municipal wells are within 5 miles of the Plant.</td>
</tr>
<tr>
<td>FL</td>
<td>C.D. McIntosh, Jr. Power Plant</td>
<td>City of Lakeland</td>
<td>Coal fly ash, bottom ash and FGD waste</td>
<td>Demonstrated on-site damage to groundwater</td>
<td>Groundwater around two unlined CCW landfills and process waste water ponds is contaminated with arsenic, cadmium, lead, selenium, and nitrates above MCLs, vanadium above state std, and manganese, iron, sulfate, TDS and pH above SMCLs near property lines. FDEP Consent Order was issued in 2001 to address monitoring and cleanup. In 2010, MCL for arsenic was exceeded in 15 wells monitoring 3 water bearing zones.</td>
<td>Disposal areas are near Lake Parker, the shoreline of which is densely populated, and the lake is used recreationally.</td>
</tr>
<tr>
<td>IA</td>
<td>George Neal Station North</td>
<td>Berkshire Hathaway d/b/a MidAmerican Energy</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to groundwater moving off-site, (into the Missouri River on the western perimeter of the property)</td>
<td>Since 2001, arsenic has exceeded the MCL in all 6 wells monitoring the shallow and deeper aquifers downgradient of the CCW monofill with maximum concentration exceeding the MCL by 22 times. High levels of iron, manganese and sulfate are also in groundwater downgradient from the monofill.</td>
<td>Unknown</td>
</tr>
<tr>
<td>IA</td>
<td>George Neal Station South</td>
<td>Berkshire Hathaway d/b/a MidAmerican Energy</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to groundwater moving off-site, (as indicated by downgradient contaminant levels exceeding state standards that indicate contaminants are migrating in groundwater)</td>
<td>Groundwater monitoring implemented in 2000 has found arsenic up to 8.4 times the MCL in downgradient groundwater. Average iron and manganese levels surpass SMCLs by up to 32 and 75 times, respectively and the Lifetime Health Advisory for manganese by 6 times. Selenium, barium and zinc exceed "Upgradient Control Limits" set by IA DNR indicating these contaminants are migrating beyond the disposal site.</td>
<td>Unknown</td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Owner</td>
<td>Wastes Present</td>
<td>Determination</td>
<td>Documented Impact</td>
<td>At Risk Populations</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IA</td>
<td>Lansing Power Station</td>
<td>Alliant Energy d/b/a Interstate Power & Light</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to on-site groundwater</td>
<td>Groundwater downgradient from the ash landfill at Lansing Station has arsenic levels at more than twice the MCL. Sampling also shows that iron, sulfate and manganese are far above SMCLs and manganese concentrations also exceed EPA’s Lifetime Health Advisory level by as much as 33 times.</td>
<td>There are about a dozen residences within 1000 feet of the landfill and ash ponds. There are 33 drinking wells within a 2-mile radius of the Plant and 5 public water sources within a 5-mile radius.</td>
</tr>
<tr>
<td>IL</td>
<td>Joliet 9 Generating Station</td>
<td>Edison International d/b/a Midwest Generations EME LLC</td>
<td>Coal bottom ash and boiler slag</td>
<td>Demonstrated damage to off-site groundwater, drinking water and surface water moving off-site</td>
<td>Midwest Generation bought out or replaced 18 off-site drinking water wells contaminated with boron from CCW dumped in its unlined landfill and two unlined ponds built in a quarry 1,000 feet away. IEPA has applied relaxed groundwater standards for boron, cadmium, molybdenum and selenium since 1996, e.g. allowing groundwater moving off-site to be contaminated 52 times over the MCL for cadmium. In Aug. 2009, IEPA issued a Notice of Violation citing 50 exceedances of groundwater standards for arsenic, barium, copper and molybdenum. Arsenic has exceeded the MCL by up to 8.3 times and molybdenum had exceeded the fed. Lifetime HA by 70 times in 2 off-site monitoring wells. Yet IEPA has not required testing or replacement of off-site private wells northeast of the site even though its modeling indicates their likely contamination.</td>
<td>There are 94 drinking wells within a mile radius of the landfill with wells downgradient to the northeast and southeast of the disposal sites. Concerns are that pumping in other quarries to the east will pull the contamination into more private wells.</td>
</tr>
<tr>
<td>IL</td>
<td>Marion Plant</td>
<td>Southern Illinois Power Cooperative</td>
<td>Coal fly ash, bottom ash, FGD waste</td>
<td>Demonstrated damage to groundwater moving off-site to surface water (discharging into Saline Creek on the northern perimeter of the site)</td>
<td>Cadmium levels from unlined ponds and a landfill have reached 17.6 times the MCL and 35 times federal water quality standard for acute toxicity in groundwater discharging to Saline Creek. Cadmium and iron also exceed Illinois Class I Groundwater Standards. 2009 data show high concentrations of aluminum, boron and manganese in ash pond discharges to Saline Creek.</td>
<td>There are 3 wells within a mile radius of the CCW disposal areas.</td>
</tr>
<tr>
<td>IL</td>
<td>Venice Power Station</td>
<td>Ameren Energy d/b/a AmerenUE</td>
<td>Coal fly ash, bottom ash, wastewater sludge, storm water runoff</td>
<td>Demonstrated damage to groundwater off-site (400 feet east of ash ponds & beyond property line)</td>
<td>Contaminant plumes from inactive, unlined ash ponds exceed the MCL for arsenic by 21 times on-site and by 3.8 times 400 feet east of ash ponds in off-site monitoring wells and exceed boron Health Advisories and IL Class I groundwater standards 600 feet from the ponds. Groundwater Management Zone proposed to control off-site contamination.</td>
<td>Unknown</td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Owner</td>
<td>Wastes Present</td>
<td>Determination</td>
<td>Documented Impact</td>
<td>At Risk Populations</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KY</td>
<td>Mill Creek Station</td>
<td>E.ON d/b/a Louisville Gas & Electric</td>
<td>Coal fly ash, bottom ash, FGD waste, coal pile runoff</td>
<td>Demonstrated damage to groundwater moving off-site, (Ohio River).</td>
<td>Groundwater monitoring has measured arsenic, sulfate and TDS exceeding MCLs and SMCLs in a contaminant plume one-mile wide potentially endangering off-site use of shallow groundwater.</td>
<td>There are 15 private wells within a 2-mile radius and 4 public wells within a 5-mile radius of the Plant.</td>
</tr>
<tr>
<td>KY</td>
<td>Shawnee Fossil Plant</td>
<td>Tennessee Valley Authority</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to groundwater moving off-site, (into Little Bayou Creek and Ohio River).</td>
<td>Groundwater in the Alluvial Aquifer is contaminated with arsenic and selenium exceeding MCLs, boron exceeding USEPA’s Lifetime Health Advisory and sulfate and TDS exceeding SMCLs. Assessment documents contamination of the site since the 1980s. Reddish leachate seeps from CCW areas into Little Bayou Creek.</td>
<td>Unknown - Metropolis Lake in adjacent state-owned park is contaminated with mercury.</td>
</tr>
<tr>
<td>KY</td>
<td>Spurlock Power Station</td>
<td>East Kentucky Power Cooperative</td>
<td>Coal fly ash, bottom ash and FGD waste</td>
<td>Demonstrated damage to off-site groundwater, (750 feet beyond landfill boundary).</td>
<td>Spurlock’s CCW landfill has contaminated underlying groundwater since at least 2005 with arsenic, iron, sulfate and TDS exceeding MCLs and SMCLs. Arsenic has reached 16 times the MCL in an off-site well 750 feet northeast of the landfill. The disposal site discharges to three receiving streams that flow into the Ohio River.</td>
<td>There are 25 private wells within a 2-mile radius and 3 public wells within a 5-mile radius of the Plant.</td>
</tr>
<tr>
<td>LA</td>
<td>Big Cajun 2 Power Plant</td>
<td>NRG Energy d/b/a Louisiana Generating</td>
<td>Coal fly ash, bottom ash, wastewater sludge</td>
<td>Demonstrated damage to groundwater moving off-site, (at property boundary).</td>
<td>A mile long complex of ash ponds has contaminated all five on-site monitoring wells with selenium up to 26.4 times the MCL. LDEQ has required 11 more wells be installed but also allowed approximately 11,500 tons of Big Cajun’s ash to be dumped into the Mississippi River for barge mooring cells without any monitoring to assure that selenium or other ash metals are not contaminating the river.</td>
<td>There are 3 private drinking wells within a 2-mile radius and 11 public wells within a 5-mile radius of the Plant. Four public wells are downgradient of the Plant.</td>
</tr>
<tr>
<td>LA</td>
<td>Dolet Hills Power Station</td>
<td>Cleco Power</td>
<td>Coal fly ash, bottom ash, FGD waste, storm water runoff, metal cleaning waste</td>
<td>Demonstrated damage to groundwater moving off-site, (half mile from disposal sites).</td>
<td>Groundwater has been contaminated with arsenic, lead and selenium exceeding MCLs. Sulfate concentrations are up to 16 times higher than the SMCL and TDS is up to 28 times higher than the SMCL. Each is more than 4 times the SMCL a half mile downgradient of disposal sites.</td>
<td>There are 2 private wells within a 2-mile radius and 1 public well within a 5-mile radius of the Plant.</td>
</tr>
<tr>
<td>LA</td>
<td>Rodemacher Power Station</td>
<td>Cleco Power</td>
<td>Coal fly ash, bottom ash, storm water runoff, metal cleaning waste, clarifier sludge</td>
<td>Demonstrated damage to groundwater moving off-site, (to Lake Rodemacher, Bayou de Jean and the Red River).</td>
<td>Monitoring of four wells under a CCW landfill has found average arsenic 4 times and maximum arsenic up to 5.75 times the MCL and lead exceeding the MCL under other disposal units. Contamination is discharging to off-site surface water bodies 30 feet from waste disposal units with no attempt to monitor surface or groundwater off-site.</td>
<td>There are 36 registered water wells within a mile radius and 3 public drinking water wells within a 5-mile radius of the Plant. CLECO and the Louisiana DNR had conflicting well data. See site report.</td>
</tr>
</tbody>
</table>
IN HARM’S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Owner</th>
<th>Wastes Present</th>
<th>Determination</th>
<th>Documented Impact</th>
<th>At Risk Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>J.R. Whiting Generating Plant</td>
<td>CMS Energy d/b/a Consumers Energy</td>
<td>Coal fly ash, boiler cleaning wastes, treated sewage waste</td>
<td>Demonstrated off-site ecological damage to aquatic life.</td>
<td>A 1980s study conducted by the U.S. Fish and Wildlife Service concluded that effluent discharges from the coal ash basin adjacent to Lake Erie put oligochaetes (freshwater worms) and young fish at risk. Chronic exposure to effluent could undermine fitness of populations by increased susceptibility to disease, predation and reduced reproductive capacity.</td>
<td>Not Examined</td>
</tr>
<tr>
<td>NC</td>
<td>Dan River Steam Station</td>
<td>Duke Energy</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated on-site damage to groundwater</td>
<td>Voluntary groundwater monitoring at Dan River’s ash ponds has revealed levels of chromium, iron, lead, manganese, silver and sulfate exceeding state groundwater standards and federal MCLs.</td>
<td>Several dozen private residences are within two miles of the ash ponds.</td>
</tr>
<tr>
<td>ND</td>
<td>Antelope Valley Station</td>
<td>Basic Electric Power Cooperative</td>
<td>Coal fly ash, bottom ash, FGD waste, inert construction waste</td>
<td>Demonstrated damage to on-site groundwater</td>
<td>A closed, clay-lined CCW landfill has contaminated underlying groundwater with arsenic that has increased to more than 3 times the MCL. ND regulators have no monitoring data, only trend graphs of results provided by the power plant.</td>
<td>The area surrounding the Plant is primarily agricultural and there are private wells used for irrigation. There are 2 public water supplies within 5 miles of the Plant.</td>
</tr>
<tr>
<td>ND</td>
<td>Leland Olds Station</td>
<td>Basic Electric Power Cooperative</td>
<td>Coal fly ash, bottom ash, coal pile runoff, coal slack, boiler blowdown</td>
<td>Demonstrated damage to on-site groundwater</td>
<td>Monitoring has measured arsenic at nearly 8 times and lead at nearly 5 times MCLs as well as elevated selenium and boron in groundwater underneath clay-lined, decommissioned ash ponds.</td>
<td>A municipal well is within 5 miles of the plant. Fish and irrigation water from the Missouri river could be at risk.</td>
</tr>
<tr>
<td>NE</td>
<td>Sheldon Station</td>
<td>Nebraska Public Power District</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to groundwater moving off-site (at property boundary).</td>
<td>Selenium and sulfate have risen to levels exceeding MCLs and SMCLs in shallow groundwater 400 feet downgradient of a closed, clay-lined ash landfill at the northern property line. State has extended monitoring period and expanded monitoring to determine extent of the contamination.</td>
<td>An irrigation well is located downgradient within one mile of the landfill.</td>
</tr>
<tr>
<td>NY</td>
<td>Cayuga Generation Plant</td>
<td>AES</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to groundwater on-site and a former private residential well (now owned by AES)</td>
<td>Concentrations of arsenic and selenium exceed MCLs in groundwater on-site by 10 times and 1.6 times, respectively. Ash leachate pond discharges to Cayuga Lake grossly exceed surface water quality standards for arsenic, cadmium and selenium, but NYDEC does not limit or monitor for these parameters in Cayuga Lake.</td>
<td>Cayuga Lake is one of New York’s Finger Lake, and heavily used for recreation.</td>
</tr>
</tbody>
</table>
IN HARM’S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Owner</th>
<th>Wastes Present</th>
<th>Determination</th>
<th>Documented Impact</th>
<th>At Risk Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>Cardinal Plant</td>
<td>American Electric Power</td>
<td>Coal fly ash, bottom ash, FGD waste</td>
<td>Demonstrated damage to groundwater moving off-site (discharging into Riddles Run and Blockhouse Hollow).</td>
<td>A statistically significant increase in arsenic exceeding the MCL by up to 10 times and molybdenum exceeding the federal Health Advisory by more than 10 times are in groundwater underneath two unlined ash ponds. Private wells in the Tidd-Dale Subdivision are only a half mile downgradient, but have not been sampled.</td>
<td>The nearby Tidd-Dale subdivision is in the direct groundwater path of Fly Ash Reservoir 2. The subdivision relies on private drinking water wells. There are 16 private drinking wells with 2 miles of the Plant and 5 public drinking water sources within 5 miles.</td>
</tr>
<tr>
<td>OH</td>
<td>Gavin Power Plant</td>
<td>American Electric Power d/b/a Ohio Power Company</td>
<td>Coal fly ash, bottom ash, FGD waste, filter cake, lime</td>
<td>Demonstrated damage to groundwater off-site (in monitoring well beyond the southern property line and surface water and aquatic life in Stingy Run and Kyger Creek)</td>
<td>Ash landfill monitoring shows groundwater is contaminated with alpha activity, arsenic, barium, cadmium, lead and molybdenum in excess of MCLs and the federal Lifetime Health Advisory. Molybdenum has reached 2.5 times this advisory in groundwater 700 ft south of landfill. Wells exceeding alpha activity MCL have grown from 9 to 15. NPDES permit violations have occurred at the landfill and closed ash pond. Their discharges are acutely toxic to aquatic life.</td>
<td>There are at least 63 wells within 1.5 miles of the fly ash pond. Human exposure to contaminants may occur if fish is consumed from nearby surface waters.</td>
</tr>
<tr>
<td>OH</td>
<td>Muskingum River Plant</td>
<td>American Electric Power d/b/a Ohio Power Company</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to groundwater moving off-site (to southern property line).</td>
<td>Monitoring shows exceedances of the MCL for alpha particles (up to 8.5 times the MCL), a notable increase in barium is occurring and iron and sulfate are substantially exceeding SMCLs in shallow downgradient groundwater 350 feet from an unlined ash pond. Arsenic and mercury exceed MCLs by more than 3 times in the seepage from the pond dike.</td>
<td>48 drinking water wells are within 1.5 miles of the plant; two wells are 0.25 miles from the plant</td>
</tr>
<tr>
<td>OH</td>
<td>Industrial Excess Landfill</td>
<td>Hyman Budoff / Merle & Charles Kittinger</td>
<td>Coal ash, masonry rubble, paper, scrap lumber, organic chemical liquid wastes, hospital waste, septic tank waste, other wastes</td>
<td>Demonstrated damage to off-site groundwater, including damage to many domestic drinking water wells.</td>
<td>This site has been designated a Superfund Site by the EPA. MCLs for antimony, arsenic, beryllium, cadmium, chromium and lead has been exceeded often by many times and in off-site residential wells. Radionuclides and anthropogenic radioisotopes have migrated into nearby residential areas.</td>
<td>There are 90 private wells with 1500 feet of the site. There are documented cases of residents drinking contaminated well water.</td>
</tr>
<tr>
<td>OK</td>
<td>Northeastern Station</td>
<td>American Electric Power d/b/a Public Service Company of Oklahoma</td>
<td>Coal fly ash</td>
<td>Demonstrated damage to groundwater moving off-site (to the Verdigris river at the southern boundary).</td>
<td>Groundwater at this unlined ash landfill contains selenium up to 37 times, arsenic up to 6 times, lead up to 13 times, and barium up to 4 times the MCL. Chromium and thallium exceed MCLs. Vanadium is 9 times state standards. Contamination flows in 3 directions. Arsenic is 3 times the MCL 900 feet northwest of the landfill.</td>
<td>At least 6 private wells are downgradient within 2 miles in Oologah and 3 public wells are within 5 miles.</td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Owner</td>
<td>Wastes Present</td>
<td>Determination</td>
<td>Documented Impact</td>
<td>At Risk Populations</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OR</td>
<td>Boardman Plant</td>
<td>Portland General Electric</td>
<td>Coal fly ash, bottom ash, economizer ash</td>
<td>Demonstrated damage to groundwater moving off-site (at monitoring wells 750 and 1,500 feet from CCW disposal area)</td>
<td>Groundwater contamination has been documented at the ash landfill and Carty Reservoir where ash sluice water has been disposed at the Boardman Plant since 1981. The Oregon Numerical Groundwater Quality Reference Level (ONGQRL) for selenium has been exceeded and vanadium has reached 2.5 times state standards in shallow groundwater 1,500 feet downgradient of the ash landfill which has a liner made of hydrated coal ash. No off-site monitoring is occurring. Carty Reservoir is not sampled for vanadium or selenium.</td>
<td>Groundwater in the vicinity of the plant is used for irrigation and livestock. Within 5 miles of the Plant, 14 wells are used for irrigation, 19 wells are used as private water supply and 18 wells are used for livestock watering. Carty Reservoir is also used for irrigation at a neighboring farm.</td>
</tr>
<tr>
<td>PA</td>
<td>Bruce Mansfield Power Station</td>
<td>FirstEnergy</td>
<td>Coal fly ash, FGD Waste</td>
<td>Demonstrated damage to off-site groundwater and surface water (in domestic wells and in Mark's Run and other surface waters).</td>
<td>Contamination and discharges from the unlined Little Blue Run surface impoundment have caused exceedances of groundwater and/or surface water quality standards for aluminum, antimony, arsenic, barium, boron, cadmium, chloride, chromium, fluoride, iron, lead, manganese, pH, selenium, sulfate, TDS, thallium, turbidity. Contamination has been detected in multiple off-site residential drinking wells, in Mark's Run and other off-site surface waters, and at many on-site monitoring wells moving off-site.</td>
<td>At least 22 private wells have been contaminated above state standards, federal MCLs, SMCLs, or health advisories</td>
</tr>
<tr>
<td>PA</td>
<td>Hatfield's Ferry Power Station</td>
<td>Allegheny Energy</td>
<td>Coal fly ash, bottom ash, wastewater sludge, storm water runoff</td>
<td>Demonstrated damage to groundwater moving off-site and to off-site surface water and aquatic life (in Little Whitely Creek and tributaries).</td>
<td>Arsenic, molybdenum, boron, sulfate and total dissolved solids (TDS) are far over standards in groundwater flowing from this largely unlined CCW landfill. Total arsenic has reached 342 times the MCL, boron more than 5 times the Lifetime Health Advisory and molybdenum 33 times this advisory in groundwater 1,500 feet from the landfill that is flowing toward a municipal water supply intake on the Monongahela River that has had documented exceedances of the arsenic MCL. The landfill's leachate pollutes streams with boron, molybdenum, sulfate, thallium and TDS violating PA water quality criteria and harms aquatic life.</td>
<td>There are seven drinking water wells within 2 miles of the ash site.</td>
</tr>
<tr>
<td>SD</td>
<td>Big Stone Power Plant</td>
<td>Otter Tail Power</td>
<td>Coal fly ash, bottom ash, FGD waste, wastewater</td>
<td>Demonstrated damage to groundwater moving off-site (at northern and eastern property boundaries and south toward the Whetstone River).</td>
<td>21 of 25 monitoring wells report exceedances of groundwater standards downgradient of CCW disposal units in two aquifers. Arsenic has been up to 13 times and lead up to 7 times the MCL, boron up to 34 times the Lifetime Health Advisory and sulfate up to 224 times the SMCL at 56,000 mg/L. Despite mounding of groundwater at the property lines, no monitoring of nearby ponds or private wells has occurred</td>
<td>Groundwater is the only source of public water supply in South Dakota. There are 119 wells within a 5-mile radius of the Plant.</td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Owner</td>
<td>Wastes Present</td>
<td>Determination</td>
<td>Documented Impact</td>
<td>At Risk Populations</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TN</td>
<td>Cumberland Steam Plant</td>
<td>Tennessee Valley Authority</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to on-site groundwater.</td>
<td>Groundwater downgradient of the gypsum storage area and ash ponds contains arsenic more than twice the MCL, selenium 3 times the MCL and boron 13 times the Child Health Advisory. Aluminum, chloride, iron, manganese, sulfate and TDS exceed the SMCL. Placement of two CCW storage-disposal areas over older unlined ash ponds that were built in a former creek channel has created conditions conducive to contamination.</td>
<td>There are 440 households within 3 miles. The majority of nearby drinking water sources utilize groundwater.</td>
</tr>
<tr>
<td>TN</td>
<td>Gallatin Fossil Plant</td>
<td>Tennessee Valley Authority</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to on-site groundwater moving off-site (into the adjacent Cumberland River)</td>
<td>An unlined closed ash pond has contaminated groundwater with beryllium up to 6 times the MCL, cadmium exceeding the MCL, nickel exceeding the TN MCL by 2.5 times and boron consistently exceeding the federal Child Health Advisory. Concentrations of aluminum, iron, manganese, sulfate and TDS exceed Secondary MCLs. Two newer active ash impoundments are not lined or monitored.</td>
<td>Many public drinking water sources for communities near Gallatin use treated water from the Cumberland River. The Gallatin Water Department draws water just over 1 mile downstream of the plant’s ash ponds. Disposal areas discharge into recreational waters of Tennessee River within a mile of New Johnsonville and Camden municipal water intake pipes.</td>
</tr>
<tr>
<td>TN</td>
<td>Johnsonville Fossil Plant</td>
<td>Tennessee Valley Authority</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated damage to on-site groundwater discharging to surface water,(Tennessee River).</td>
<td>An active ash disposal area resides on an unlined island in the middle of the Tennessee River. Groundwater on the island and at-on shore dumps contains arsenic, aluminum, boron, cadmium, chromium, iron, lead, manganese, molybdenum, sulfate and TDS far above federal Maximum Contaminant Levels (MCL), SMCLs, and federal health advisory levels.</td>
<td>Disposal areas discharge into recreational waters of Tennessee River within a mile of New Johnsonville and Camden municipal water intake pipes.</td>
</tr>
<tr>
<td>TX</td>
<td>Fayette Power Project</td>
<td>Lower Colorado River Authority</td>
<td>Coal fly ash, bottom ash, FGD waste, boiler slag construction wastes, other non-CCW wastes</td>
<td>Demonstrated damage to groundwater moving off-site (to the southeast and southwest and discharging to Cedar and Baylor Creeks).</td>
<td>Groundwater sampling has found arsenic, cobalt, molybdenum and selenium exceeding Texas Protective Contamination Levels, MCLs and Health Advisories by 2-4 times. Aluminum, chloride, manganese, sulfate and TDS concentrations exceed federal SMCLs. Molybdenum contamination in the middle sand water bearing unit appears to be moving off-site.</td>
<td>TCEQ has notified two neighboring landowners of possible molybdenum contamination. There are 42 private wells and 23 public wells within 5 miles of the Plant.</td>
</tr>
<tr>
<td>VA</td>
<td>Clinch River Plant</td>
<td>American Electric Power d/b/a Appalachian Power</td>
<td>Coal fly ash and bottom ash</td>
<td>Demonstrated off-site ecological damage to aquatic ecosystems, (fish, snails, mussels, and aquatic macroinvertebrates in the Clinch River).</td>
<td>In 1967 a dike from a coal ash pond at Clinch River Plant collapsed releasing a caustic ash slurry into the Clinch River. Some 217,000 fish were killed for up to 90 miles downriver and benthic macroinvertebrates, snails and mussels were also wiped out or very negatively affected. Forty years after the spill, aquatic ecosystems downstream remain degraded. High concentrations of copper and aluminum from power plant effluent also contribute to biotic impairment.</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
State | Site | Owner | Wastes Present | Determination | Documented Impact | At Risk Populations |
--- | --- | --- | --- | --- | --- | --- |
VA | Glen Lyn Plant | American Electric Power d/b/a Appalachian Power | Coal fly ash and bottom ash | Demonstrated off-site damage to surface water and aquatic ecosystems, (aquatic macroinvertebrates and bacteria in a receiving stream). | Scientific studies in the 1970s and 1980s documented acute toxicity of effluent discharges from a fly ash holding pond to aquatic insects (mayflies) and bacteria in a mountain stream that flows into the New River. High TSS, pH at 9.5 units and cadmium and selenium exceeding Virginia Water Quality Standards for acute toxicity by 30 times and 4 times, respectively in the stream were responsible for the mortality. Bioaccumulation of copper by 580 times and cadmium and nickel by 10,000 times in Duckweek, a floating plant in the pond over levels in the water or sediments posed a toxic potential to off-site life if the plant was flushed from the pond. | Unknown |
WI | Columbia Energy Center | Alliant Energy d/b/a Wisconsin Power & Light | Coal fly ash and bottom ash | Demonstrated off-site damage to aquatic ecosystems (aquatic macroinvertebrates in a receiving stream). | Ecological studies in the late 1970s identified devastating impacts on aquatic life in a stream receiving discharge from ash ponds wiping out nearly all aquatic insects for 2.2 miles downstream. High conductivity and concentrations of cadmium and copper that likely exceeded federal and Wisconsin water quality criteria for acute toxicity in the stream as well as flocculent in the discharge coating the stream bottom were the culprits. | Unknown |
WI | Oak Creek Power Plant (Caledonia) | Wisconsin Energy(WE Energies) d/b/a Wisconsin Electric Power Co. | Coal fly ash, bottom ash, FGD waste, wastewater solids | Demonstrated damage to off-site drinking water wells | Twelve private drinking wells within 1500 feet of the Oak Creek and Caledonia CCW landfills have been contaminated with molybdenum exceeding WI Enforcement Standard (ES) and the federal Lifetime Health Advisory by up to 3 times and boron levels exceeding WI's Preventative Action Limit by up to 3.8 times. WE Energies started providing bottled water to residences in August 2009. WIDNR has started the investigation. Molybdenum in monitoring wells at the Oak Creek landfills is up to 13.5 times higher than WI ES and federal Lifetime HA and 375 times higher than these standards in landfill leachate. | In August 2009, WE Energies informed nearby residents that their water was unsafe to drink and has been providing bottled water to about two dozen residences. There about 100 more households north of these homes and potentially in the pathway of contamination but most are on public water. Other homes are potentially affected by localized contamination further west. |
<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Flint Creek Power Plant</td>
<td>Barium</td>
<td>Federal Primary MCL</td>
<td>2 mg/L</td>
<td>2.4 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.01 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium</td>
<td>Federal Primary MCL</td>
<td>0.1 mg/L</td>
<td>0.128 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.5 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>0.152 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver</td>
<td>Federal Secondary MCL</td>
<td>0.1 mg/L</td>
<td>0.2 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Independence Steam Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.016 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.006 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.023 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>Montville Generating Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.262 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>EPA Proposed RCRA Remedial Action Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beryllium</td>
<td>Federal Primary MCL</td>
<td>0.004 mg/L</td>
<td>0.0138 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>C.D. McIntosh, Jr. Power Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.0165 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>Consent Decree issued in December 2001; State Required Assessment Monitoring</td>
</tr>
<tr>
<td>IA</td>
<td>George Neal Station North</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.218 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>Risk evaluation requested by State</td>
</tr>
<tr>
<td>IA</td>
<td>George Neal Station South</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.0839 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>IA</td>
<td>Lansing Power Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.023 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 2: Coal Combustion Waste Damage to Groundwater
<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL</td>
<td>Joliet 9 Generating Station</td>
<td>Ammonia</td>
<td>IL Applicable Groundwater Quality Standard (IAGQS)</td>
<td>1.57 mg/L</td>
<td>5.3 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic</td>
<td>Federal Primary MCL and IAGQS</td>
<td>0.01 mg/L</td>
<td>0.1 mg/L</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barium</td>
<td>Federal Primary MCL</td>
<td>2 mg/L</td>
<td>0.36 mg/L</td>
<td>Surface Water</td>
<td>Discharge Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory</td>
<td>3.0 mg/L</td>
<td>10 mg/L</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>Exceeded 0.264 mg/L</td>
<td>Groundwater</td>
<td>Unknown</td>
<td>Illinois EPA issued a Notice of Violation in August 2009 for 50 groundwater exceedances. No cleanup required as of yet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>Federal Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>2.9 mg/L</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Federal Secondary MCL</td>
<td>6.5 - 8.5</td>
<td>9.98</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>Exceeded 0.325 mg/L</td>
<td>Groundwater</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sodium</td>
<td>Federal Health-based Drinking Water Advisory</td>
<td>20 mg/L</td>
<td>470 mg/L</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfate</td>
<td>Federal Secondary MCL</td>
<td>250 mg/L</td>
<td>690 mg/L</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS</td>
<td>Federal Secondary MCL</td>
<td>500 mg/L</td>
<td>1,300 mg/L</td>
<td>Groundwater</td>
<td>Off-site, unconfirmed</td>
<td></td>
</tr>
<tr>
<td>IL</td>
<td>Marion Plant</td>
<td>Boron</td>
<td>Illinois Groundwater Standard</td>
<td>2 mg/L</td>
<td>2.53 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.088 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Pollutant</td>
<td>Reference</td>
<td>Limit</td>
<td>Maximum Result</td>
<td>Media</td>
<td>Location</td>
<td>Enforcement Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>------------------------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>IL</td>
<td>Venice Power Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.215 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring, Groundwater Management Zone proposed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory**</td>
<td>3 mg/L</td>
<td>27.7 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.006 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>KY</td>
<td>Mill Creek Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.015 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td>KY</td>
<td>Shawnee Fossil Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.012 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory**</td>
<td>3 mg/L</td>
<td>15 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>0.087 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>KY</td>
<td>Spurlock Power Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.16 mg/L</td>
<td>Groundwater</td>
<td>Off-site</td>
<td>None</td>
</tr>
<tr>
<td>LA</td>
<td>Big Cajun 2 Power Plant</td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>1.32 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td>LA</td>
<td>Dolet Hills Power Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.0156 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.023 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>0.173 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>Rodemacher Power Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.0575 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.0209 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>Dan River Steam Station</td>
<td>Chromium</td>
<td>North Carolina Groundwater Standard</td>
<td>0.05 mg/L</td>
<td>0.0611 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.0392 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver</td>
<td>North Carolina Groundwater Standard</td>
<td>0.0175 mg/L</td>
<td>0.0411 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Coal Combustion Waste Damage to Groundwater
<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>Antelope Valley Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.035 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>ND</td>
<td>Leland Olds Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.0789 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.0716 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>NE</td>
<td>Sheldon Station</td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>0.0728 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>Post-closure groundwater monitoring extended with more monitoring wells</td>
</tr>
<tr>
<td>NY</td>
<td>Cayuga Generation Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.019 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>Federal Primary MCL New York Groundwater Standard</td>
<td>0.01 mg/L</td>
<td>0.076 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>OH</td>
<td>Cardinal Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.1 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory</td>
<td>3 mg/L</td>
<td>5.57 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>Federal Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>0.43 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td>OH</td>
<td>Gavin Power Plant</td>
<td>Alpha Particles</td>
<td>Federal Primary MCL</td>
<td>15 pCi/L</td>
<td>1,497 pCi/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.057 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barium</td>
<td>Federal Primary MCL</td>
<td>2 mg/L</td>
<td>13.8 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Daily Maximum Concentration in NPDES Discharge Permit</td>
<td>8.551 mg/L</td>
<td>9.47 mg/L</td>
<td>Outfall 007</td>
<td>Landfill Discharge to Surface Water</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.007 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.051 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>Federal Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>0.409 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Assessment Monitoring</td>
</tr>
</tbody>
</table>
Table 2: Coal Combustion Waste Damage to Groundwater

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>Muskingum River Plant</td>
<td>Alpha</td>
<td>Particles</td>
<td>Federal Primary MCL</td>
<td>15 pCi/L</td>
<td>128 pCi/L</td>
<td>Groundwater</td>
<td>Monitoring required due to increase in impoundment dam height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antimony</td>
<td>Federal Primary MCL</td>
<td>0.006 mg/L</td>
<td>0.315 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.132 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barium</td>
<td>Federal Primary MCL</td>
<td>2 mg/L</td>
<td>2.3 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beryllium</td>
<td>Federal Primary MCL</td>
<td>0.004 mg/L</td>
<td>0.121 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.265 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium</td>
<td>Federal Primary MCL</td>
<td>0.1 mg/L</td>
<td>1.680 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.70 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mercury</td>
<td>Federal Primary MCL</td>
<td>0.002 mg/L</td>
<td>0.0055 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel</td>
<td>Federal Primary MCL</td>
<td>0.1 mg/L</td>
<td>2.2 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thallium</td>
<td>Federal Primary MCL</td>
<td>0.002 mg/L</td>
<td>0.0129 mg/L</td>
<td>Groundwater</td>
<td>Off-site (close to or within a residential area)</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>Industrial Excess Landfill (Uniontown)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Groundwater</td>
<td>EPA Designated Superfund Site</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Coal Combustion Waste Damage to Groundwater
Table 2: Coal Combustion Waste Damage to Groundwater

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Northeastern Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.094 mg/L</td>
<td>Groundwater</td>
<td>On-site<sup>xvii</sup></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barium</td>
<td>Oklahoma Groundwater Standard<sup>xi</sup></td>
<td>1 mg/L</td>
<td>8.69 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State Required Investigation and possible remediation of contaminant plume moving south but no action on contamination moving north.</td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td>Chromium</td>
<td>Federal Primary MCL</td>
<td>0.1 mg/L</td>
<td>0.225 mg/L</td>
<td>Groundwater</td>
<td>On-site<sup>xix</sup></td>
<td>None</td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.208 mg/L</td>
<td>Groundwater</td>
<td>On-site<sup>xx</sup></td>
<td>None</td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td>Selenium</td>
<td>Oklahoma Groundwater Standard<sup>li</sup></td>
<td>0.01 mg/L</td>
<td>1.85 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td>Thallium</td>
<td>Federal Primary MCL</td>
<td>0.002 mg/L</td>
<td>0.003 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td>Vanadium</td>
<td>Florida Groundwater Standard (see site report)</td>
<td>0.049 mg/L</td>
<td>0.465 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>OR</td>
<td>Boardman Plant</td>
<td>Selenium</td>
<td>Oregon Groundwater Standard</td>
<td>0.01 mg/L</td>
<td>0.019 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>Vanadium</td>
<td>Florida Groundwater Standard (see site report)</td>
<td>0.049 mg/L</td>
<td>0.126 mg/L</td>
<td>Groundwater</td>
<td>On-site<sup>xx</sup></td>
<td>None</td>
</tr>
<tr>
<td>PA</td>
<td>Bruce Mansfield Power Station (Little Blue)</td>
<td>Aluminum</td>
<td>Federal Secondary MCL</td>
<td>0.05 - 0.2 mg/L</td>
<td>0.711 mg/L</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td>Off-site Private Drinking Well</td>
</tr>
<tr>
<td>PA</td>
<td></td>
<td>Antimony</td>
<td>Pennsylvanian WQC Health Criteria</td>
<td>0.0056 mg/L</td>
<td>0.01 mg/L</td>
<td>Surface Water</td>
<td>Off-site (seep 1,490 feet from the impoundment)</td>
<td>Off-site Private Drinking Well</td>
</tr>
<tr>
<td>PA</td>
<td></td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.021 mg/L</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td>Off-site Private Drinking Well</td>
</tr>
</tbody>
</table>

PADEP and FirstEnergy entered into a settlement agreement in 1994 for groundwater contamination; since then, PADEP has issued two NOVs for fugitive dust and required resampling of 10 wells with elevated arsenic levels, but no comprehensive remediation plan has been required nor penalties assessed.
Table 2: Coal Combustion Waste Damage to Groundwater

<table>
<thead>
<tr>
<th>State</th>
<th>Site Description</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>Bruce Mansfield Power Station (Little Blue)</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.036 mg/L</td>
<td>Groundwater</td>
<td>On-site*xi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arsenic</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>0.01 mg/L</td>
<td>0.028 mg/L</td>
<td>Surface Water</td>
<td>Off-site (a spring over 2,000 feet from the impoundment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barium</td>
<td>Federal Primary MCL</td>
<td>2 mg/L</td>
<td>5.98 mg/L</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>1.6 mg/L</td>
<td>15.2 mg/L</td>
<td>Surface Water</td>
<td>Off-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>1.6 mg/L</td>
<td>11.8 mg/L</td>
<td>Surface Water</td>
<td>On-site (a seep over 1,800 feet from the impoundment)</td>
<td>PADEP and FirstEnergy entered into a settlement agreement in 1994 for groundwater contamination; since then, PADEP has issued two NOVs for fugitive dust and required resampling of 10 wells with elevated arsenic levels, but no comprehensive remediation plan has been required nor penalties assessed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.85 mg/L (total)</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>0.00064 mg/L</td>
<td>0.00074 mg/L</td>
<td>Surface Water</td>
<td>Off-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloride</td>
<td>Federal Secondary MCL</td>
<td>250 mg/L</td>
<td>3,520 mg/L / 1,900 mg/L</td>
<td>Groundwater</td>
<td>Off-site Monitoring Well/Private Drinking Water Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride</td>
<td>Federal Secondary MCL</td>
<td>2 mg/L</td>
<td>2.3 mg/L</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoride</td>
<td>Pennsylvania Primary MCL</td>
<td>2 mg/L</td>
<td>6.4 mg/L</td>
<td>Groundwater</td>
<td>On-site*xi</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Pollutant</td>
<td>Reference</td>
<td>Limit</td>
<td>Maximum Result</td>
<td>Media</td>
<td>Location</td>
<td>Enforcement Action</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>PA</td>
<td>Bruce Mansfield Power Station (Little Blue)</td>
<td>Hexavalent Chromium</td>
<td>Pennsylvania Criteria Continuous/Maximum Concentration</td>
<td>0.01 mg/L 0.016 mg/L</td>
<td>0.028 mg/L</td>
<td>Surface Water</td>
<td>Off-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hexavalent Chromium</td>
<td>Pennsylvania Criteria Continuous/Maximum Concentration</td>
<td>0.01 mg/L 0.016 mg/L</td>
<td>0.02 mg/L</td>
<td>Surface Water</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iron</td>
<td>Federal Secondary MCL</td>
<td>0.3 mg/L</td>
<td>36 mg/L / 29 mg/L</td>
<td>Groundwater</td>
<td>Off-site Monitoring Well/Private Drinking Water Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>2.69 mg/L</td>
<td>Groundwater</td>
<td>On-site \cite{xxi}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>1.8 mg/L (total)</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>0.01094 mg/L</td>
<td>0.150 mg/L</td>
<td>Surface Water</td>
<td>Off-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manganese</td>
<td>Federal Secondary MCL</td>
<td>0.05 mg/L</td>
<td>3.72 mg/L / 2.399 mg/L</td>
<td>Groundwater</td>
<td>Off-site Monitoring Well/Private Drinking Water Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Federal Secondary MCL</td>
<td>6.5 - 8.5</td>
<td>8.7</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Pennsylvania Secondary WQC Health Criteria</td>
<td>6.5 (minimum)</td>
<td>5.5 (minimum result)</td>
<td>Surface Water</td>
<td>Off-site</td>
<td></td>
</tr>
</tbody>
</table>

PADEP and FirstEnergy entered into a settlement agreement in 1994 for groundwater contamination; since then, PADEP has issued two NOVs for fugitive dust and required resampling of 10 wells with elevated arsenic levels, but no comprehensive remediation plan has been required nor penalties assessed.
Table 2: Coal Combustion Waste Damage to Groundwater

<table>
<thead>
<tr>
<th>State</th>
<th>Site</th>
<th>Pollutant</th>
<th>Reference</th>
<th>Limit</th>
<th>Maximum Result</th>
<th>Media</th>
<th>Location</th>
<th>Enforcement Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>Bruce Mansfield Power Station (Little Blue)</td>
<td>Selenium</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>0.0046 mg/L</td>
<td>0.150 mg/L</td>
<td>Surface Water</td>
<td>Off-site**xi (a seep just below impoundment dam)</td>
<td>PADEP and FirstEnergy entered into a settlement agreement in 1994 for groundwater contamination; since then, PADEP has issued two NOVs for fugitive dust and required resampling of 10 wells with elevated arsenic levels, but no comprehensive remediation plan has been required nor penalties assessed.</td>
</tr>
<tr>
<td>PA</td>
<td>Hatfield's Ferry Power Station</td>
<td>Sulfate</td>
<td>Federal Secondary MCL</td>
<td>250 mg/L</td>
<td>1,710 mg/L</td>
<td>Groundwater</td>
<td>Off-site Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>TDS</td>
<td>Federal Secondary MCL</td>
<td>500 mg/L</td>
<td>7,310 mg/L / 2,900 mg/L</td>
<td>Groundwater</td>
<td>Off-site Monitoring Well/Private Drinking Water Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>Thallium</td>
<td>Pennsylvania WQC Health Criteria</td>
<td>0.00024 mg/L</td>
<td>0.00046 mg/L</td>
<td>Surface Water</td>
<td>Off-site creek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>Turbidity</td>
<td>Pennsylvania Groundwater Standard</td>
<td>1 NTU</td>
<td>220 NTU / 40 NTU</td>
<td>Groundwater</td>
<td>Off-site Monitoring Well/Private Drinking Well</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>3.419 mg/L (total)</td>
<td>Groundwater</td>
<td>On-site**xii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>Boron</td>
<td>Federal Child Health Advisory</td>
<td>3 mg/L</td>
<td>31.7 mg/L</td>
<td>Groundwater</td>
<td>On-site**xiii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>Boron</td>
<td>Pennsylvania Criteria Continuous Concentration</td>
<td>1.600 mg/L</td>
<td>8.428 mg/L</td>
<td>Surface Water</td>
<td>Off-site in unnamed tributary of Little Whitely Creek. Required corrective action plan to address deficiencies in landfill's wetland treatment system. Steps to be implemented are unclear.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hatfield's Ferry Power Station</td>
<td>Chromium</td>
<td>Federal Primary MCL</td>
<td>0.1 mg/L</td>
<td>0.104 mg/L</td>
<td>Groundwater</td>
<td>On-site**xxx</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Pollutant</td>
<td>Reference</td>
<td>Limit</td>
<td>Maximum Result</td>
<td>Media</td>
<td>Location</td>
<td>Enforcement Action</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>PA</td>
<td>Hatfield’s Ferry Power Station</td>
<td>Manganese</td>
<td>Federal Secondary MCL</td>
<td>0.050 mg/L</td>
<td>0.355 mg/L</td>
<td>Surface Water</td>
<td>Off-site in unnamed tributary of Little Whitely Creek</td>
<td>2008 Consent Order and Agreement for violations of effluent limits in ash landfill discharges to the unnamed tributary to Little Whitely Creek. Required corrective action plan to address deficiencies in landfill’s wetland treatment system. Steps to be implemented are unclear.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>EPA Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>1.31 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>EPA Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>0.49 mg/L</td>
<td>Surface Water</td>
<td>Off-site in unnamed tributary of Little Whitely Creek</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfate</td>
<td>Federal Secondary MCL</td>
<td>250 mg/L</td>
<td>1,256 mg/L</td>
<td>Surface Water</td>
<td>Off-site in unnamed tributary of Little Whitely Creek</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDS</td>
<td>Federal Secondary MCL</td>
<td>500 mg/L</td>
<td>2,537 mg/L</td>
<td>Surface Water</td>
<td>Off-site in unnamed tributary of Little Whitely Creek</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Big Stone Power Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.1322 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>Assessment required additional wells in 1990. Contamination has continued.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory</td>
<td>3 mg/L</td>
<td>204 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.1086 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strontium</td>
<td>Federal Lifetime Health Advisory</td>
<td>4 mg/L</td>
<td>6.03 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfate</td>
<td>Federal Secondary MCL</td>
<td>250 mg/L</td>
<td>56,000 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Pollutant</td>
<td>Reference</td>
<td>Limit</td>
<td>Maximum Result</td>
<td>Media</td>
<td>Location</td>
<td>Enforcement Action</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>TN</td>
<td>Cumberland Steam Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.022 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>No actions evident</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory</td>
<td>3 mg/L</td>
<td>38 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>0.15 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>Gallatin Fossil Plant</td>
<td>Beryllium</td>
<td>Federal Primary MCL</td>
<td>0.004 mg/L</td>
<td>0.023 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>EPA Child Health Advisory</td>
<td>3 mg/L</td>
<td>5.6 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.0064 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel</td>
<td>Tennessee Groundwater Standard</td>
<td>0.1 mg/L</td>
<td>0.25 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>Johnsonville Fossil Plant</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.570 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>No actions evident. TDEC has allowed TVA to stop monitoring the two most contaminated areas on-site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boron</td>
<td>Federal Child Health Advisory</td>
<td>3 mg/L</td>
<td>48 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium</td>
<td>Federal Primary MCL</td>
<td>0.005 mg/L</td>
<td>0.260 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium</td>
<td>Federal Primary MCL</td>
<td>0.1 mg/L</td>
<td>0.16 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead</td>
<td>Federal Primary MCL</td>
<td>0.015 mg/L</td>
<td>0.39 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>EPA Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>1.20 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>Fayette Power Project (Sam Seymour)</td>
<td>Arsenic</td>
<td>Federal Primary MCL</td>
<td>0.01 mg/L</td>
<td>0.023 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt</td>
<td>Texas Residential Protective Contamination Level</td>
<td>0.0073 mg/L</td>
<td>0.0303 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>None</td>
</tr>
<tr>
<td>State</td>
<td>Site</td>
<td>Pollutant</td>
<td>Reference</td>
<td>Limit</td>
<td>Maximum Result</td>
<td>Media</td>
<td>Location</td>
<td>Enforcement Action</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>TX</td>
<td>Fayette Power Project</td>
<td>Molybdenum</td>
<td>Federal Lifetime Health Advisory^xxvii</td>
<td>0.04 mg/L</td>
<td>0.154 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>Letter sent to neighboring landowners warning of potential molybdenum contamination</td>
</tr>
<tr>
<td></td>
<td>(Sam Seymour)</td>
<td>Selenium</td>
<td>Federal Primary MCL</td>
<td>0.05 mg/L</td>
<td>0.212 mg/L</td>
<td>Groundwater</td>
<td>On-site</td>
<td>State required assessment monitoring for selenium.</td>
</tr>
<tr>
<td>WI</td>
<td>Oak Creek Power Plant</td>
<td>Boron</td>
<td>Wisconsin Preventative Action Limit</td>
<td>0.19 mg/L</td>
<td>0.72 mg/L</td>
<td>Groundwater</td>
<td>Off-Site - Douglas and Avenue Private Wells</td>
<td>Utility and WDNR are sampling off-site private wells.</td>
</tr>
<tr>
<td></td>
<td>(Caledonia)</td>
<td>Molybdenum</td>
<td>Wisconsin Enforcement Standard</td>
<td>0.04 mg/L</td>
<td>0.094 mg/L</td>
<td>Groundwater</td>
<td>Off-Site - Douglas and Botting Avenue Wells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum</td>
<td>Federal Lifetime Health Advisory</td>
<td>0.04 mg/L</td>
<td>0.124 mg/L</td>
<td>Groundwater</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Arkansas Groundwater Protection Standard for silver is 0.18 mg/L.
2. The IAGQS for barium is 0.075 mg/L. IAGQS are site specific standards approved by IL EPA for the Joliet Site.
3. The IAGQS for boron is 5.9 mg/L.
4. The IAGQS for cadmium is 0.264 mg/L, 52.8 times higher than the Federal Primary MCL.
5. The IAGQS for molybdenum is 1.38 mg/L, 34.5 times higher than the Federal Life-time Health Advisory.
6. The IAGQS for pH is 6.14 to 8.56.
7. The IAGQS for selenium is 0.325 mg/L, 6.5 times higher than the Federal Primary MCL.
8. The IAGQS for sodium is 165 mg/L, more than 8 times higher than the health-based Federal Drinking Water Advisory.
9. The IAGQS for sulfate is 493 mg/L.
10. The IAGQS for TDS is 1,112 mg/L.
11. The federal Child Health Advisory for boron is 3.0 mg/L.
12. The Illinois Groundwater Protection Standard for boron is 2.0 mg/L.
This is an approximate value, based on a trend graph. The state had only trend graphs of data available for public review from the operator.

Ash leachate discharges to Cayuga Lake contain arsenic up to 0.086 mg/L, 4,778 times the federal human health/fish consumption water quality criteria, cadmium up to 0.052 mg/L, 26 times the federal aquatic life acute toxicity water quality criteria (a hardness dependent standard), selenium up to 0.273 mg/L, 55 times the federal aquatic life chronic toxicity water quality criteria and boron up to 75.1 mg/L, 25 times the federal Child Health Advisory. Cayuga Lake is not monitored for possible water quality criteria (standard) violations resulting from these discharges.

The federal primary MCL for selenium is 0.05 mg/L.

Nickel and zinc concentrations exceeding water quality criteria in discharges from the ash pond are suspected of killing the test aquatic insect, Ceriodaphnia dubia, in Stingy Run.

Arsenic, chromium and lead have been measured up to 9.4 times, 2.25 times and 9.3 times higher than their federal primary MCLs respectively in groundwater 900 feet downgradient of the ash landfill to the north reflecting contamination moving off-site.

The federal primary MCL for barium is 2.0 mg/L.

The federal primary MCL for selenium is 0.05 mg/L.

This vanadium concentration was measured at a well 1,500 feet downgradient of the ash landfill reflecting contamination moving off-site.

Result reflects on-site contamination moving off-site.

The Pennsylvania Groundwater Standard for lead is 0.005 mg/L.

This arsenic concentration was measured at a well approximately 1,500 feet downgradient of the ash landfill reflecting contamination moving off-site.

This boron concentration was measured at a well approximately 1,500 feet downgradient of the ash landfill reflecting contamination moving off-site.

This chromium concentration was measured at a well approximately 1,500 feet downgradient of the ash landfill reflecting contamination moving off-site.

This molybdenum concentration was measured at a well approximately 1,500 feet downgradient of the ash landfill reflecting movement of contamination off-site.

The Texas Protective Contamination Level (TPCL) for molybdenum is 0.122 mg/L.
DAMAGE CASES

Entity/Company – Location
American Electric Power (AEP) d/b/a Southwestern Electric Power Company (SWEPCO) - Flint Creek Power Plant
21797 SWEPCO Plant Road
Gentry, AR 72734
Benton County
Latitude: 36.489495 Longitude: -79.715427

Determination
Demonstrated damage to off-site groundwater 360 feet west of the landfill; full extent of contamination not known

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from the landfill to groundwater

Summary
Groundwater flowing from the CCW landfill at the Flint Creek Power Plant is contaminated at least 360 feet beyond the solid waste boundary of the landfill at concentrations that have exceeded Arkansas groundwater protection standards (GWPS), EPA Maximum Contaminant Levels (MCL), and EPA Secondary MCLs (SMCL). From 1994 through 1996, groundwater monitoring documented barium at 1.2 times the MCL, cadmium at twice the MCL, lead at 33 times the MCL, iron at 4.8 times the GWPS, manganese at 33 times the GWPS, and silver at 1.1 times the GWPS in multiple groundwater wells.
The Arkansas Department of Environmental Quality (ADEQ) required Flint Creek Power Plant to begin assessment monitoring in 2005 because of statistically significant increases (SSIs) of selenium, sulfate, pH, and total dissolved solids (TDS) in groundwater. Sampling of wells installed in 2009 to define the downgradient nature and extent of the contamination documented numerous additional exceedances of groundwater and drinking water protection standards. These exceedances included chromium at 1.2 times the MCL in one well, and, in another well approximately 360 feet from the landfill, selenium at 3 times the MCL, TDS at 5 times the SMCL, and sulfate at 8 times the SMCL. However, as of 2010, the downgradient extent of contamination has still not been fully defined and no off-site surface water or groundwater sampling has occurred. A CCW leachate seep with high concentrations of metals was identified in 2006, but, as of March 2010, the seep was still not mitigated. The seep reportedly drains to CCW ponds that have neither groundwater monitoring requirements nor any NPDES monitoring requirements or limits on metals in their discharge to an off-site reservoir.

Test of Proof

Southwestern Electric Power Company's (SWEPCO's) sampling of four wells at the CCW landfill for the Flint Creek Plant from November 1994 to May 1996 intended to establish statistical background groundwater quality (SWEPCO, 1996a&b) revealed exceedances of standards for multiple constituents. SWEPCO and its current owner, American Electric Power (AEP), have argued that the November 1994 exceedances were due to improperly developed wells that had high turbidity (SWEPCO, 2006a&b). However, the location of these wells at the edges of the landfill makes them unsuitable for measuring natural background groundwater quality. Even without considering the November 1994 data, exceedances of Groundwater Protection Standards (GWPS) have continued to occur since at least November 3, 1995 when cadmium concentrations exceeded the federal MCL and state GWPS (0.01 mg/L versus the 0.005 mg/L MCL and GWPS) in three wells (B-01, B-04, and B-05) (AEP, 2006a). Another sample collected from well B-02 on May 7, 1996 found exceedances of MCLs and GWPS for barium (2.4 mg/L versus 2 mg/L MCL and GWPS) and lead (0.5 mg/L, over 33 times the MCL and GWPS of 0.015 mg/L) and exceedances of the GWPS for iron (53 mg/L, almost five times the 11 mg/L GWPS), manganese (56 mg/L, almost 33 times the GWPS of 1.7 mg/L), and silver (0.2 mg/L versus 0.18 mg/L GWPS) (AEP, 2010). Note that the GWPSs for iron, manganese, and silver are less stringent than the federal SMCLs of 0.3 mg/L, 0.05 mg/L, and 0.1 mg/L, respectively.

The trend of GWPS exceedances has continued after 1996. The landfill was required to initiate assessment monitoring in April 2005 because of statistically significant increases (SSIs) of sulfate, pH, TDS, and selenium (AEP, 2010, concentrations and well numbers not given). As has been noted, the wells used to determine “background” were already contaminated, so the SSIs reflected upward trends in contaminants, rather than evidence of new contamination. AEP was required to install additional downgradient monitoring wells as a result of the selenium concentrations. Three wells (NE-1, NE-2, and NE-3), all downgradient of the landfill, were to be placed east of Well B-02, and a fourth well was planned near the property line after collection of new data (AEP, 2009). Four years later, the first three wells were installed in July to August 2009, although there is no evidence that the fourth well along the property line was ever installed (AEP, 2010).

A review of historical groundwater data published in an April 2010 monitoring report (AEP, 2010) found that numerous groundwater criteria have been continually exceeded but the downgradient extent of contamination has never been fully defined. Contamination above regulatory standards is documented approximately 360 feet beyond the solid waste boundary (as defined by ADEQ Regulation 22) in Well NE-3. Specifically, the groundwater monitoring report found that:

- **Boron** – Concentrations in Well NE-3 have ranged from 0.92 to 1.24 mg/L since August 2009 (AEP, 2010).
• **Chromium** – The concentration in Well NE-01 was 0.128 mg/L (exceeding the MCL and GWPS of 0.1 mg/L) in the October 28, 2009 sampling event.

• **Selenium** – Concentrations routinely exceeded the MCL and GWPS (0.05 mg/L) in Well B-02 from May 2008 through January 7, 2009 (0.063 to 0.089 mg/L) and again on January 26, 2010 (0.103 mg/L). Selenium concentrations also exceeded the MCL and GWPS in Well NE-3 numerous times (0.134 to 0.152 mg/L) since August 2009 when the well was installed. AEP concedes that selenium concentrations are trending upward in Wells B-02 and B-05 (AEP, 2006a).

• **TDS** – Concentrations have exceeded the SMCL (500 mg/L) in Well B-02 since December 9, 1997 (maximum 1,540 mg/L). TDS concentrations have also exceeded the SMCL in Well NE-3 since it was installed (2,130–2,370 mg/L maximum). TDS concentrations in Well B-04 are trending upward (AEP, 2006a).

• **Sulfate** – Concentrations in Well B-02 have been greater than the SMCL (250 mg/L) since November 18, 1998 (888 mg/L maximum) but less than the GWPS (1,200 mg/L). However, concentrations in Well NE-3 have exceeded both the GWPS and the SMCL since it was installed (1,450 - 1,940 mg/L). Sulfate concentrations in Well B-05 are trending upward (AEP, 2006a).

• **pH** – Numerous wells are out of compliance with the federal SMCL (6.5 to 8.5 units). Levels of pH have been lower than the SMCL: consistently in Well B-02 since April 2009 (lowest measurement of 5.5); in Well B-04 for virtually every event since April 1995 (lowest measurement of 5.45); in Well B-05 for every event since April 1995 (lowest measurement of 3.6); in Well B-06 occasionally since August 2005 (lowest measurement of 6.21); in Well B-08 for virtually every event since May 2007 (lowest measurement of 6.05); and in new Wells NE-1, NE-2, and NE-3 since October 2009 (6.23 lowest, 5.98 lowest, 6.3 lowest, respectively).

ADEQ first documented a CCW landfill leachate seep discharging from the southeast corner of the landfill in December 2006 during an inspection (AEP, 2008). The CCW leachate exited the landfill area on AEP property through a culvert where stormwater runoff also exits the landfill. From there, the CCW leachate flowed through an intermittent stream on AEP property and, depending on the flow, either disappeared into the streambed or flowed to the primary ash pond.

Since February 2007, the landfill permit has required that SWEPCO collect surface water samples from a discharge point (if a discharge is present) at the southeast corner of the landfill (AEP, 2010). The Solid Waste Branch staff at ADEQ maintained that the surface water samples were in fact leachate seeps from the landfill (Leamons, May 2010). The monitoring results showed numerous metals and other CCW indicator parameters in the leachate accordingly:

- **Barium** – concentrations ranged from 0.015 to 0.378 mg/L;
- **Boron** – concentrations ranged from 3.89 to max 12.1 mg/L;
- **Chromium** – concentrations ranged from 0.089 to 0.336 mg/L;
- **Lead** – concentrations ranged from 0.001 to 0.003 mg/L;
- **pH** – concentrations ranged from 11.2 to 11.74;
- **Selenium** – concentrations ranged from 0.151 to 0.421 mg/L;
- **TDS** – concentrations ranged from 3,260 to 3,680 mg/L;
- **Sulfate** – concentrations ranged from 1,770 to 2,270 mg/L.

Constituents Involved
Barium, boron, cadmium, chromium, iron, lead, manganese, pH, selenium, silver, sulfate, and total dissolved solids
At Risk Population
According to the Arkansas Well Drilling Commission, 45 five private wells were found within a two-mile radius of the Flint Creek landfill. Data was obtained by sending the location of the Flint Creek landfill with a specified two-mile radius to GIS specialists, who generated an excel table that included latitude/longitude data for private wells in the area. All private wells serve rural homes. Public well data was found by requesting data within a five-mile radius of the landfill. Six public wells were found to serve the towns of Siloam Springs and Gentry. Arkansas is in the process of placing all well data online in a public database with the help of USGS, so well records may be incomplete and not represent all private and public well locations.

Incident and Date Damage Occurred / Identified
CCW pollutant concentrations have exceeded federal MCLs and SMCLs and state GWPSs since 1994. CCW leachate discharges to surface water have been identified since December 2006.

Regulatory Actions
Statistically significant increases (SSIs) in January 2005 for sulfate, pH, TDS, and selenium resulted in ADEQ requiring SWEPCO to initiate assessment monitoring at the landfill (AEP, 2006a). AEP prepared a “Nature and Extent Workplan” four years later, in June 2009, to “characterize the nature and extent of selenium in groundwater.”
ADEQ issued a Notice of Deficiency (NOD) to SWEPCO on November 5, 2008 because of an uncontrolled discharge of CCW leachate from the southeast corner of the landfill (AEP, 2008). The NOD requested that AEP install a leachate collection system and treat CCW leachate prior to its discharge to the ponds. AEP argued that no treatment other than discharge to the pond was necessary and that continued discharge through the intermittent stream was acceptable because the ponds have adequate treatment capacity. As of March 2010, construction of the leachate collection system was not complete.

Wastes Present
Fly ash, bottom ash, low volume (unspecified) plant wastewater sludges, and coal pile runoff solids

Type(s) of Waste Management Unit
Although the Flint Creek Plant has operated a 40-acre Class 3N landfill since 1978, the Plant has only had a landfill permit in 1994 (AEP, 2006a). The current landfill permit allows for disposal of dried fly ash and dredged bottom ash. The permit requires only semi-annual groundwater monitoring. It does not require daily or interim cover, and it requires post-closure care for only two years (SWEPCO, 1994). The permit does not specify if a liner was required.

The Flint Creek Plant also has a 30-acre primary ash pond and a 3.2-acre secondary ash pond south of the plant operations area. The primary pond is a treatment unit that is permitted to receive bottom ash sluice water, low volume wastewater, stormwater runoff, coal pile run-off, and treated domestic wastewater (0.03 million gallons a day (MGD)) from the town of Gentry’s wastewater treatment plant (WWTP). The ponds provide treatment through settling and neutralization (AEP, 2006b). The estimated combined flow through the ash ponds that discharge to SWEPCO Lake is 7.29 MGD (AEP, 2008), but the flow can be up to 9.83 MGD (AEP, 2006b).

Active or Inactive Waste Management Units
Active

Hydrogeologic Conditions
The groundwater flow direction is variable and can flow in three directions from the landfill—to the north, northwest, and northeast (AEP, 2006a). Although not illustrated on potentiometric surface diagrams in groundwater monitoring reports (which show the direction of groundwater flow), a southeasterly flow is also likely given the large CCW leachate seep in that area and the surface topography drainage to the southeast. The groundwater seepage velocity was almost 17 feet per year during an August 26, 2006 sampling event (AEP, 2006a) and almost 19 feet per year during a January 2010 event (AEP, 2010). Wells are screened in both soil and bedrock (AEP, 2010). The average depth to water is approximately 36 feet in ten wells screened in soil and 47 feet in one bedrock well (B-07A) (AEP, 2010).

Additional Narrative
According to Solid Waste Branch staff at ADEQ, coal ash ponds and surface impoundments at Arkansas power plants are used for storage, not disposal, of CCW. The SWEPCO ponds at Flint Creek are managed for an exempted reuse of coal bottom ash; the ponds are dredged for re-use of the solids and/or their disposal elsewhere (Leamons, 2010b). The ponds and their dredged materials are exempt from regulation under the “use of recovered materials” provision in ADEQ Regulation 22. Solid Waste Branch staff maintained that the ADEQ Water Branch would be the Branch to require groundwater monitoring of ponds, although Water Branch staff stated that groundwater monitoring is not required for any ash pond in the state.
and that any regulation of such ponds would be conducted by the Solid Waste Branch (Kort, 2010). In short, groundwater monitoring is not required around the coal ash ponds at Flint Creek Power Plant.

A follow-up conversation with Solid Waste Branch staff revealed that the Solid Waste Branch staff did not know if the dredged pond material is beneficially re-used at Flint Creek, did not know how often the coal ash ponds are dredged, did not know how the dredged material is de-watered once dredged, and did not know if the landfill is even lined (Leamons, 2010a). Given the age of the landfill, a liner meeting current ADEQ Regulation 22 requirements is unlikely. Those regulations (approved March 28, 2007) require that Class 3 landfills have a two-foot compacted clay liner with a maximum hydraulic conductivity of 1×10^{-7} centimeters per second and a leachate collection system that is designed to maintain less than 30 centimeters of leachate over the liner. There is no indication in the AEP landfill permit that either design standard was ever required for this Class 3 landfill.

The NPDES permit that regulates discharges from the ash ponds at Flint Creek only includes numeric limits for total suspended solids (TSS, 25 mg/L monthly average, 43 mg/L Daily Maximum), pH (6 to 9 units), and chronic bio-monitoring (AEP, 2006b). The permit includes no limits or monitoring for parameters known to exist in CCW at this site, such as selenium, boron, or chromium.

Sources
AEP. 2006b. Authorization to Discharge Wastewater Under the National Pollutant Discharge Elimination System and the Arkansas Water and Air Pollution Control Act, Final Permit, Permit Number AS0037842 (effective Mar. 1, 2006).
Kort. 2010. Phone conversation with Evelyn Kort, Geologist, ADEQ, Water Division (May 5, 2010).
Leamons. 2010a. Phone conversation with Bryan Leamons, P.E., Technical Branch Manager, ADEQ, Solid Waste Management Division (May 19, 2010).
Entity/Company – Location
Entergy, d/b/a Arkansas Power and Light (AP&L) - Independence Steam Station
555 Point Ferry Road
Newark, AR 72562
Independence County
Latitude: 35.674444 Longitude: -91.396111

Determination
Demonstrated damage to groundwater moving off-site (to northern and eastern property lines)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants to groundwater from the ash landfill, surge pond, coal storage pile, recycle ponds, and underground plant piping

Summary
Thirty-four monitoring wells have documented widespread groundwater contamination around the coal combustion waste (CCW) landfill and ponds at the Independence Steam Station. Groundwater monitoring since the 1990s has documented exceedances of federal Maximum Contaminant Levels (MCL) for arsenic (up to 6 times the MCL), cadmium (1.2 times the MCL), and lead (1.5 times the Federal Action Level), and Secondary MCL (SMCL) exceedances for iron (131 times the SMCL), manganese (167 times the SMCL), pH (5.5 units), total dissolved solids (TDS) (3.6 times the SMCL), and sulfate (4 times the SMCL). Nearby farm irrigation systems draw groundwater from beneath the landfill and surge pond towards the eastern, northeastern, and southeastern property lines. Wells along the eastern property line downgradient of the landfill have continually exceeded SMCL standards making it extremely likely that off-site contamination is occurring. Nevertheless, no corrective actions, off-site monitoring, or enforcement actions have occurred, and AP&L recently stopped sampling 26 wells at the surge pond and plant areas without objection from the Arkansas Department of Environmental Quality (ADEQ).
Test of Proof

Eight groundwater monitoring wells are currently monitored semi-annually at the landfill, surge pond, coal pile, and power plant area for arsenic, boron, sulfate, chloride, pH, total dissolved solids (TDS), specific conductance, iron, manganese, total organic carbon, sodium, potassium, magnesium, strontium, total alkalinity, turbidity, and calcium (FTN, 2009). At least 26 other wells around the surge pond, various wastewater treatment ponds, and the plant area are no longer sampled (Sadler, 2010) even though prior monitoring at these wells indicated exceedances of federal standards.

AP&L’s analysis of the fly ash and bottom ash generated by the plant reveals the presence of the same heavy metals and CCW indicator parameters that are found in the contaminated groundwater (Entergy, 2005). A partial summary of those results, for parameters that have been reported in on-site groundwater samples, is as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fly Ash Total Composition (mg/kg)</th>
<th>Bottom Ash Total Composition (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>11 to 14</td>
<td>< 5</td>
</tr>
<tr>
<td>Boron</td>
<td>500 to 630</td>
<td>120 to 300</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.56 to 0.99</td>
<td><0.4</td>
</tr>
<tr>
<td>Iron</td>
<td>20,000 to 65,000</td>
<td>12,000 to 53,000</td>
</tr>
<tr>
<td>Lead</td>
<td>21 to 26</td>
<td>< 4 to 7.4</td>
</tr>
<tr>
<td>Manganese</td>
<td>93 to 200</td>
<td>49 to 160</td>
</tr>
<tr>
<td>Strontium</td>
<td>2,000 to 5,700</td>
<td>1,100 to 4,500</td>
</tr>
<tr>
<td>Sulfate</td>
<td>290 to 5,600</td>
<td>480 to 1,200</td>
</tr>
</tbody>
</table>

Groundwater monitoring began in 1990 (AP&L, 1996). From 1990 to 1995, AP&L monitored a more extensive list of heavy metals and other CCW indicator parameters than it currently monitors. The 1990 to 1995 groundwater monitoring results indicated that:

- **Strontium** concentrations were the highest at the following locations: MW-1D (near production/drinking water well, maximum concentration was 0.82 mg/L in May 1994); MW-2D (near production/drinking water well at 0.78 mg/L); well 413 (north of coal pile, west of landfill, maximum concentration was 0.72 mg/L in November 1993); well 501 (northwest of coal pile, maximum concentration was 2.72 mg/L in November 1995); surge pond wastewater (maximum concentration was 2.05 mg/L in June 1992); West Recycle Pond wastewater (maximum concentration was 2.15 mg/L in June 1992); East Recycle Pond wastewater (maximum concentration was 2.02 mg/L in June 1995); and WR Sump (maximum concentration was 1.83 mg/L in May 1993). While there is no MCL for strontium, the higher concentrations among these approached USEPA’s current Lifetime Health Advisory Level for strontium of 4.0 mg/L.

- **Arsenic** exceeded the MCL (0.010 mg/L) at the following locations: well C-409 (near the recycled water pond at 0.013 mg/L), in well C-410 (downgradient of the surge pond at 0.016 mg/L), and well C-411 (downgradient of the coal storage pile at 0.015 mg/L).

- **Lead** exceeded the Federal Action Level (0.015 mg/L) in well C-410 (downgradient of the surge pond at 0.023 mg/L).

- **Cadmium** exceeded the MCL (0.005 mg/L) at well C-410 (downgradient of the surge pond at 0.006 mg/L).

- **SMCLs** were routinely exceeded. The highest concentrations of **TDS** (maximum 1,796 mg/L, well D501) and **sulfate** (maximum 1,005 mg/L, well MW-1D) generally occurred near the surge pond, the coal storage pile, and the plant production/drinking water wells that create a cone of depression.
from those areas, which draws groundwater toward the well by lowering the level of groundwater in the vicinity of the well.

AP&L attributed Statistically Significant Increases (SSIs) of TDS, sulfate, and strontium in one well (C-413, labeled as 413S on the site photo, above) near the coal storage pad to off-site agricultural contamination. AP&L based this conclusion upon the well’s location near the northern property line (north of the coal pile), its interpretation of groundwater flow directions during winter and spring (not summer) months being towards plant production and drinking water wells, and a change in off-site crops from soybeans to rice in the spring of 1993. AP&L's interpretation was flawed for several reasons. It failed to consider that well C-413 is downgradient of the coal pile during summer months when off-site irrigation pumping is the greatest and thus pulling groundwater away from coal pile. Furthermore, rice generally requires more water for irrigation; therefore, more pumping for rice should increase the rate of flow of contaminated water away from the plant property. In addition, increased TDS, strontium, and sulfate are classic indicator parameters of CCW runoff at C-413, and are consistent with groundwater flow to the north from pumping. Finally, there are no off-site wells north of the property line to demonstrate that off-site degraded groundwater quality was caused by agricultural uses.

AP&L’s coal ash landfill is located along the eastern property boundary. A review of potentiometric surface diagrams which indicate groundwater flow directions for February 1995, June 1995, August 1995, and November 1995 indicates that the contour of groundwater movement was relatively flat (or shallow), except near three production/drinking water wells in the plant area. Production well drawdown did not affect groundwater flow at the landfill or the eastern portion of the surge pond which exited the property to the east and southeast. As occurs at the coal pile, irrigation pumping creates northeasterly and easterly groundwater flow directions off-site and away from the landfill and away from the surge pond with the strongest period of influence in August when pumping is the greatest.

The CCW landfill was issued a Class 3N Landfill permit on February 14, 2002 (ADEQ, 2002), but has been in operation since at least 1990 (AP&L, 1996). The new permit required wells to be sampled quarterly for two years to establish “baseline water quality conditions” and samples to be collected semi-annually thereafter. The permit required monitoring for 28 heavy metal and indicator parameters, and statistical analyses of increases in concentrations as a basis for corrective actions.

- A 2007 groundwater monitoring report (FTN, 2007) indicates the in-depth monitoring required by the permit is not being performed. Sampling only includes 17 parameters and, of those, only one, arsenic, is a heavy metal (FTN, 2007). Five new wells, 602S through 606S, have been installed. Two of those, 604S and 605S, are along the eastern property boundary and downgradient from the landfill. Contamination from these wells is moving east beyond the property boundary. The landfill monitoring program uses water levels from the entire plant area, but only analyzes samples from eight wells around the landfill, the coal pile, the plant production wells, and the surge pond.

Key points from the 2007 groundwater monitoring report that summarized the results of data from 2002 to 2007 include:

- The laboratory detection limit for arsenic was equal to the MCL, making it impossible to determine if arsenic concentrations were increasing until the MCL had already been exceeded.
- Arsenic exceeded the MCL by more than six times in one well (including a reading of 0.061 mg/L in 602S, September 2006). The well is located in the coal pile area near the plant production wells. AP&L rejected that result and other metal results because of apparent high turbidity in the well.
The highest reported TDS (910 mg/L in well 603S, October 2003) and sulfate (455 mg/L in well 603S, October 2005) and the most frequent exceedances of SMCLs were associated with wells closest to the landfill (wells 511S, 603S, 604S, 605S, and 606S).

TDS concentrations exceeded the SMCL for virtually every sampling event since October 2003 in wells 604S and 605S, located approximately 270 feet and 180 feet, respectively, from the eastern property line where drawdown from off-site irrigation occurs. From 2002 to 2007, other SMCLs were exceeded:

- **pH** was lower than the SMCL range (6.5-8.5 units) in eight wells. Samples farthest from the pH range were taken in wells 604S and 605S in every sampling period, with 5.5 units being the worst result.
- **Iron** exceeded the SMCL (0.30 mg/L) in seven wells. The greatest exceedances in every sampling event occurred in well 605S, and its maximum concentration was 39.3 mg/L, 131 times the SMCL.
- **Manganese** exceeded the SMCL (0.05 mg/L) in six wells. The greatest exceedances were in wells 602S and 605S, and the maximum concentration was 8.35 mg/L, 167 times the SMCL.

A statistically significant increase (SSI) in chloride concentrations was reported in well 605S.

A SSI of manganese greater than the SMCL was reported in well 604S, a well along the eastern property line.

AP&L rejected data for some sampling events when some results were too high. For example, AP&L rejected: arsenic and boron results for well 602S (September 2006); manganese results for wells 413S (October 2004), 602S (September 2006), and 605S (May 2004); and iron results for wells 602S (September 2006), and 605S (May 2004). The files reviewed did not indicate whether ADEQ accepted or denied those rejections or asked for documentation to support a claim that values were outliers.

A CCW landfill groundwater monitoring report submitted in December 2009 also included the shortened 17-parameter list (FTN, 2009). Key points of the report which, tabulated results from 2007 to 2009, include:

- Arsenic in one well (605S, 0.007 mg/L, October 2009) along the eastern property line was slightly less than the MCL (0.01 mg/L). The October event represented the first time the laboratory report limit for arsenic was lower than the MCL (0.005 mg/L versus 0.01 mg/L), because ADEQ finally required AP&L to report at the lower limit (Entergy, 2009).
- AP&L rejected groundwater elevation data for well 605S (along the eastern property line) as “potentially anomalous.”
- Boron concentrations, considered by AP&L to be a coal ash leachate indicator, are the highest in the wells closest to the landfill and the surge pond. These include 0.319 mg/L at well 603S and 0.607 mg/L at well 511S.
- The highest reported TDS and sulfate concentrations occurred in wells 511S, 603S, 604S, and 605S, which surround the CCW landfill with maximum TDS of 820 mg/L and sulfate of 288 mg/L in well 603S in October 2007.
- TDS concentrations were greater than the SMCL at five wells. Two of them are the downgradient landfill wells adjacent to the eastern property line, wells 604S and 605S.
- Other SMCLs were exceeded:
 - **pH** (SMCL of 6.5-9.0 units) – in four wells. The worst results were again from wells 604S and 605S at 6.2 units.
 - **Iron** (SMCL of 0.300 mg/L) – in five wells. Highest exceedances, up to 3.91 mg/L, 13 times the standard, again came from wells 604S and 605S.
 - **Manganese** (SMCL of 0.050 mg/L) – in five wells. Highest exceedances, up to 0.315 mg/L, 6.3 times the standard, from wells 413S and 602S north of the coal pile.
In a letter from Entergy (d/b/a AP&L) to ADEQ in 2009 to address ADEQ’s concerns that groundwater monitoring was insufficient at the ash landfill and other concerns about the lack of unaffected background or upgradient wells (Entergy, 2009), Entergy (d/b/a AP&L) stated that:

- ADEQ’s request for wells almost ¾-mile west of the CCW landfill to serve as “background” wells was improper because the area “between these monitoring wells and the landfill groundwater has been impacted by other sources (e.g. underground cooling water pipes, recycle ponds, surge pond, coal yard, and off-site agricultural impacts).”

- It would install two additional background wells west of the CCW landfill (locations not given but assumed in close proximity to the landfill and coal pile to the west), and that results from the new wells, and old wells 413S, 511S, and 603S, would be used to establish statistical background concentrations. However, this proposal ignores exceedances of MCLs or SMCLs that have occurred at all of those wells, which are not indicative of “background” or unaffected groundwater from CCW and the coal pile. Under this proposal, groundwater concentrations downgradient from the CCW landfill would be compared to already-contaminated concentrations in order to determine if SSIs are occurring and if corrective action is needed.

- It would not use pre-2002 groundwater data to determine background, pre-CCW disposal water quality, even though monitoring data from 1990 and onwards exists. Instead, AP&L suggested using recent groundwater data to establish statistical “background” levels – years after CCW landfill operations began and during which time significant, widespread groundwater contamination has been documented.

Constituents Involved
Arsenic, cadmium, iron, lead, manganese, pH, sulfate, total dissolved solids, and elevated levels of strontium and boron

At Risk Populations
At least 25 irrigation wells and three drinking water wells exist within a two-mile radius of the plant. Several are “immediately adjacent to the plant property.” Data was obtained by sending the location of the Flint Creek site with a specified two-mile radius and GIS specialists generated an excel table that included latitude and longitude data with the private wells in the area. Public well data was found the same way but instead of a two-mile radius, a five-mile radius was specified. In addition, three production wells screened in the contaminated shallow gravel aquifer have been used for drinking water at the plant. Arkansas is in the process of placing all well data online in a public database with USGS. Well records may be incomplete and not represent all private and public well locations.

Despite contamination over a broad area, ADEQ has never required any off-site sampling of private or public wells near this facility to define the lateral and vertical extent of groundwater contamination. It is also unclear what influence CCW disposal is having on the nearby White River. AP&L has asserted that the direction of groundwater flow has varied in part according to recharge from the White River located approximately one mile to the south. This claim is also not supported by any off-site data that indicates an influence on localized groundwater flow at the plant from the White River.
Mounding of groundwater in the disposal area may cause localized flow in other directions.

Incident and Date Damage Occurred / Identified
Exceedances of MCLs and SMCLs were documented beginning in the early 1990s.

Regulatory Actions
The ADEQ has not ordered any “assessment monitoring,” taken any corrective action, undertaken any off-site monitoring, or required AP&L to undertake such monitoring despite evidence of groundwater contamination moving off-site and State regulatory requirements prohibiting off-site contamination (Leamons and Sadler, 2010).

However, AP&L recently stopped voluntary monitoring of 26 plant-area and surge pond groundwater monitoring wells, many of which had documented contamination without objection from ADEQ (Sadler, 2010).

Wastes Present
Fly ash, bottom ash, and process wastewaters

Type(s) of Waste Management Unit
A fly ash/bottom ash landfill, two wastewater recycle ponds, a surge pond, and a coal storage pile. The landfill and surge pond are each nearly ¾-mile long.

AP&L has applied for a landfill expansion and ADEQ will require that the lateral expansion to the east of the existing landfill have a leachate collection system; however, the collected leachate is planned for disposal into the surge pond (Leamons and Sadler, 2010) – which is believed to be an unlined, wet disposal unit.
The surge pond currently receives the following process wastewaters, ash handling waters, and coal combustion related wastes (Entergy, 2006):

- Ash handling water
- Ash landfill stormwater runoff
- Coal pile stormwater runoff
- Switchyard runoff
- Chemical metal cleaning waste
- Boiler blowdown and area runoff
- Recycle ponds discharge
- Oil / water separator discharge

The two recycle ponds receive ash handling water, chemical metal cleaning wastewater, boiler blowdown, and area runoff. The combined flow of the recycle ponds discharges to the surge pond.

Active or Inactive Waste Management Units

Active

Hydrogeologic Conditions

Shallow groundwater conditions exist in a gravel aquifer beneath the plant (AP&L, 1996). The water table is approximately 20 to 30 feet below ground surface. The monitoring well system includes water obtained from the top of the gravel aquifer (400-series wells) and the base of the gravel aquifer (500-series wells). The 600-series well screen interval depths are the same as the 400-series wells, in the uppermost portion of the gravel aquifer (FTN, 2009). Potentiometric surface diagrams indicate a relatively flat contour of groundwater flow except near three production and drinking water wells in the plant area. Nevertheless, groundwater flow rates are high, according to the following seepage velocities:

- 1990–1995 – seepage velocities ranged from 0.2 to 13.4 feet per day, or 73 to 4,891 feet per year (AP&L, 1996).
- 2007 – the average seepage velocity was 0.95 feet per day, or 345 feet per year (FTN, 2007).
- 2009 – the average groundwater seepage velocity was 0.20 feet per day, or 74 feet per year (FTN, 2009).

A mound of groundwater has been documented beneath the surge pond, which alters the local direction of groundwater flow. Further, plant production and drinking water wells near the plant operations area create a cone of depression from beneath waste disposal and treatment areas. Off-site irrigation wells located immediately adjacent to the property line seasonally alter the northern and eastern direction of flow from the coal pile, the landfill, and the surge pond – particularly during the summer when irrigation pumping is the greatest. Groundwater flow from the landfill and surge pond typically exits the property to the east and southeast, but that direction is more northeasterly during summer irrigation months.

Sources

Leamons and Sadler. 2010. Telephone conversation with Bryan Leamons, P.E., Engineer Supervisor, and Bill Sadler, Waste Management Division, Arkansas Department of Environmental Quality (June 9, 2010).

Sadler, Bill. 2010. Phone conversation with Bill Sadler, Solid Waste Management Division, Arkansas Department of Environmental Quality (May 6, 2010).
Entity/Company – Location
NRG Energy/Montville Power, LLC - Montville Generating Station
Inactive On-site and Off-site Coal Ash Disposal Areas in Hunts Brook Watershed
74 Lathrop Road
Uncasville, CT 06382
New London County
Latitude: 41.4283 Longitude: -72.1024

Determination
Demonstrated damage to groundwater on-site discharging to the Thames River, including exceedances of MCLs for arsenic and beryllium, and exceedances of SMCLs for iron, manganese and pH. Demonstrated damage to soil above health-based compliance standards.

Probable Cause(s)
Leaching of coal combustion waste (CCW) metals and pH into groundwater in beneath the following Areas of Concern (AOC): AOC5 (former ash settling ponds); AOC9 (ash/dredge disposal area); and AOC12 (former coal and ash storage area).

Summary
Groundwater and soil at the NRG Energy’s Montville Generating Station was contaminated with metals as a result of historic placement of coal ash and slurry throughout the 49-acre site. In the northeastern part of the Montville Station, average concentrations (2007–2009) of arsenic in one groundwater Monitoring Well, NRG-MW-6, were more than 20 times the federal Maximum Contaminant Level (MCL). Average concentrations of beryllium also exceeded the MCL in this well. Data indicate that concentrations of arsenic and beryllium have increased somewhat in the last ten years at this well even though no new fly ash has been produced at the site in 40 years.
In the western part of the Montville Station, groundwater has average concentrations of iron far over the secondary MCL (SMCL), manganese over the SMCL, and pH below the minimum SMCL. Soil sampling in former ash disposal areas in the western part of the Montville Station found multiple metals that exceed the Pollutant Mobility Criteria (PMC) for Class GA designated areas (groundwater designated for private and public supply without treatment) and arsenic and beryllium exceeding the residential and industrial/commercial Direct Exposure Criteria (DEC) for concentrations of these metals in soils.

Test of Proof
The groundwater under the Montville Station is divided into two different zones, for which different standards apply.

In the western part of Montville Station, the Connecticut Department of Environmental Protection (CTDEP) has designated groundwater as “GA/GAA,” which means it must be suitable for drinking without treatment, and must comply with drinking water standards. This western zone includes Area of Concern (AOC) AOC5 (former ash settling ponds) and AOC9 (ash/dredge disposal area).

In the eastern part of Montville Station, CTDEP has designated groundwater as “GB,” which means that it is not suitable for human consumption without treatment and does not have to comply with drinking water standards. This zone includes AOC12 (former coal and ash storage area), and within AOC12 are two smaller areas, AOCs 3 and 6.

However, groundwater from both zones discharges into the Thames River; therefore, CTDEP’s Surface Water Protection Criteria (SWPC) within both zones were also used to identify contaminants of concern (COCs) at the Montville Generating Station (USEPA, 2000).

Environmental investigations performed in 1999 identified arsenic and beryllium as major COCs in both groundwater zones, and cadmium, copper, nickel, and zinc were also identified as more localized COCs (Metcalf and Eddy, 1999a-c).

Recent groundwater monitoring data (Shaw Environmental, 2007–2009) indicates that arsenic and beryllium concentrations remain high in the eastern zone (GB area). Both zones (GA/GAA and GB areas) have high concentrations of iron far above the SMCL, manganese above SMCL and USEPA’s Lifetime Health Advisory Level, and pH below the SMCL. Information on specific contaminants is summarized below:

- **Arsenic** concentrations in 1999 to 2000 ranged from 0.021 to 0.082 mg/L (2 to 8 times above the MCL of 0.010 mg/L) in AOC 5 at Monitoring Well NRG-MW-5, where drinking water standards apply. In the zone where drinking water standards do not apply (GB area), the maximum arsenic concentration in AOC3/AOC12 at Monitoring Well NRG-MW6 was more than 21 times the MCL in 1999–2000 (from 0.138 to 0.211 mg/L) and more than 50 times USEPA’s 2000 SWPC (0.004 mg/L). From 2007–2009, arsenic at Monitoring Well NRG-MW-6 ranged from 0.134 to 0.262 mg/L and averaged 0.216 mg/L indicating an overall increase in arsenic concentrations in the last ten years. Another well in this same zone, Monitoring Well SB1-MW1, also showed high concentrations of arsenic above the MCL (average 0.0285 mg/L, maximum 0.071 mg/L), with the average more than 7 times the CTDEP SWPC.

- **Beryllium** concentrations in 1999 to 2000 exceeded the MCL and CTDEPs SWPC of 0.004 mg/L in AOC 9 at Monitoring Well NRG-MW-1 (0.006 mg/L) and in AOC12 at Monitoring Well MW-6 (0.012 mg/L, 3 times the MCL), where drinking water standards apply. Monitoring Well NRG-MW-1 was not sampled from 2007 to 2009, so a comparison with the earlier sampling is not possible. However, beryllium concentrations at Monitoring Well NRG-MW-6 showed an upward trend, exceeding both the MCL and SWPC from 2007 to 2009 (ranging from 0.0053 to 0.0138 mg/L, average of 0.0073 mg/L). Monitoring Well SB1-MW1 also exceeded the MCL for beryllium in recent sampling with the highest value of 0.0077 mg/L collected in 2009. From 1999 to 2000, cadmium, nickel, and zinc were identified as constituents of concern in AOCs 9 and 12, and copper was identified as a COC in AOC 9. Sampling results for zinc from...
2007 to 2009 showed exceedances of USEPA’s 2000 SWPC in AOC 12 (0.212 mg/L average, 1.7 times SWPC), but no exceedances for cadmium, copper, or nickel.

SMCLs are relevant in the GA/GAA groundwater zone which includes AOCs 5 and 9. Groundwater sampling from 2007 to 2009 found the following:

- Average pH in AOC5 wells was below the SMCL of 6.5 in Monitoring Wells NRG-MW5 (5.98), MW201 (5.59), and MW202 (5.96).
- The average manganese concentration in Monitoring Well NRG-MW-5 (0.56 mg/L) was more than 10 times the SMCL, and almost twice USEPA’s Lifetime Health Advisory Level.
- The average iron concentration in Monitoring Well NRG-MW-5 (3.68 mg/L) was more than 12 times the SMCL.

Although SMCLs do not apply in the GB area (including AOC3, AOC6 and AOC12), Monitoring Well NRG-MW-6 (east of AOC3) had very low pH (4.69 average) and exceptionally high iron concentrations (230.6 mg/L average, more than 700 times the SMCL and a maximum of 339 mg/L, more than 1000 times the SMCL).

Soil sampling performed as part of the proposed partial Remedial Action Plan (RAP) for the Montville Station (Shaw Environmental, 2009) found the following:

- In AOC 5, the former ash settling ponds, lead exceeded the GA pollutant mobility criteria (PMC), and both arsenic and beryllium exceeded the residential and industrial/commercial (IC) Direct Exposure Criteria (DEC).
- In AOC 9, the former coal ash and dredge spoils area, multiple metals (not specifically identified in the RAP) exceeded the GA PMC and the residential and IC DEC.

The remedial goals of the proposed partial RAP are to achieve compliance with GA PMC for metals and reduce potential ecological risk in both AOC5 and AOC9.

Constituents Involved
Arsenic, beryllium, cadmium, copper, iron, lead, manganese, nickel, pH

At Risk Population
The area immediately west of the Montville Station is densely populated. When NRG Energy submitted its request to reclassify the ground water under the western portion of the station property from Class GA (potable) to Class GB (industrial) in 2000, NRG funded six nearby homes that were still on wells to connect to public water (Keith, 2010). At the time CTDEP sampled some of the wells but did not share the results with NRG Energy. NRG Energy was told that all but one well was compliant. The one not meeting standards was upriver from the station shallow and very close to the river and the contamination was considered to be coming from the river (Keith, 2010). In 2001, both CTDEP and USEPA judged human exposure via groundwater to not be a concern (USEPA, 2001).

Mapping of private and public wells is nearly impossible because Connecticut keeps paper records of private water wells at the county level under the Department of Health. In addition, data about public water supplies are closely held and will not be released for “security reasons.” Furthermore, precise well locations are difficult to determine as data points occur within a five acre by five acre quadrant. However, CTDEP Water Bureau staff stated that it is highly probable that over 300 private wells exist within a two-mile radius of the Montville Station and that at least 40 municipal wells exist within five miles of the Station.

In addition, groundwater at the Montville Generating Station discharges to the nearby Thames River. USEPA’s draft determination states that groundwater migration at the site is under control, but notes that it is not known whether contaminants have actually discharged to the Thames River at or above the concentrations measured in groundwater. USEPA includes calculations that suggest the high flow in the Thames River is sufficient to make any
potential surface water impacts “insignificant” (USEPA, 2000). However, no surface water monitoring data was available from points upstream and downstream of the Montville Station in order to evaluate this claim.

Incident and Date Damage Occurred / Identified

Groundwater monitoring began in 1985 with an initial network of 12 wells (NRG and MV series). Sampling of these wells and additional wells installed in 1999 and 2000 identified arsenic above the MCL in the former coal ash lagoon area and arsenic, beryllium, cadmium, copper, nickel and zinc as constituents of concern in the former coal ash storage area.

Regulatory Action

In the 1980s, Montville began groundwater monitoring, and, in 1999, conducted soil and groundwater assessments after an Equalization Basin (EB2) constructed in 1978 (in an area formerly used for coal ash storage wastewaters) became regulated as a RCRA hazardous waste unit due to corrosivity as well as occasional presence of chromium and lead. EB2 was a single membrane-lined surface impoundment, and investigations of EB2’s impact on groundwater led to implementation of a groundwater monitoring program in the late 1980s. Soil and groundwater sampling related to Phase I and II Environmental Site Assessments (ESAs) and subsequent investigations (Metcalf & Eddy, 1999a-c) led to identification of multiple potential areas of concern (AOCs), including metals contamination attributable to coal ash disposal areas in various locations at the project site. This included the classification of groundwater under the western portion of the facility as GA/GAA and thus suitable for human consumption without treatment. An application to reclassify this groundwater as GB and thus suitable for industrial uses with more relaxed standards was made in 2000 (Metcalf & Eddy, 2000), but withdrawn based on the CTDEP’s opinion that the level of contamination did not merit reclassification (USEPA, 2000).

In 2000, USEPA made a provisional determination that migration of contaminated groundwater at Montville Station was under control and that contaminated groundwater flowing into the Thames River was not having a significant impact on surface water quality (USEPA, 2000). In 2001, USEPA made a final determination that current human exposure is under control. One soil boring (MNV-63) in AOC 5 (at the former ash settling ponds) identified arsenic, beryllium, and lead at concentrations exceeding acceptable levels in soil for groundwater areas classified as GA/GAA. Accordingly, the proposed partial remedial action plan is to excavate and remove soil in this area (Shaw Environmental, 2009).

Wastes Present

Coal ash from the Montville Generating Station. The RCRA Corrective Action investigations have identified 14 areas of concern (AOCs) with contaminants that include metals and volatile and semi-volatile organic compounds around the Montville Station. This report examines data from AOCs that were both wet and dry coal ash placement areas containing coal ash from this plant where contamination can be primarily attributed to the coal ash.

Type(s) of Waste Management Unit

During the 52 years that coal was burned at Montville Station, coal ash and slurry was placed throughout the site in various disposal areas. The following three areas of concern (AOC) are the focus of this report:

- AOC 5 includes former coal ash settling ponds. The exact dates of use of the ponds are not known, but earthwork activities in the area are evident in 1965 and 1970 air photos and absent in a 1975 air photos.
- AOC 9 was used for placement of dredge spoils and coal ash.
- AOC 12 includes former coal and coal ash handling and storage areas. Within AOC 12 are two smaller AOCs:
 - AOC 3 includes a bulk fuel storage area; and
AOC 6 includes the former Equalization Basin which was earlier used for coal storage before becoming a RCRA-regulated surface impoundment for corrosive wastes.

Active or Inactive Waste Management Unit

Inactive. Ash storage areas and ponds have been inactive since Montville Generating Station converted from coal to oil in 1971.

Hydrogeologic Conditions

The main aquifer in the vicinity of Montville Generating Station is in about 40 feet of alluvium immediately under the Thames River. Bedrock lies at about 40 feet. The general direction of shallow groundwater flow is to the east and discharging to the Thames River. The same alluvial aquifer is divided between the two different CTDEP groundwater classification zones discussed above.

Additional Narrative

The Montville Generating Station is a 50-acre site that has been in continuous service since 1919. The Station used coal as a fuel for approximately 52 years until the station converted to oil in 1971.

In the late 1960s, the Montville Generating Station disposed of coal ash at several sites in the Hunts Brook watershed around Montville and Waterford, CT, which significantly degraded surface water with iron, sulfate, and total dissolved solids. Specifically, fly ash from the Montville Station was transported and dumped outside the station property in three separate sites in the Hunts Brook watershed in the Montville and Waterford communities from the mid-1960s until 1969. These are the Chesterfield-Oakdale, Moxley Hill, and Linda sites. Contamination of the watershed by the fly ash generated considerable environmental concern and the Connecticut College Archives for the Conservation and Research Foundation contain water quality reports and correspondence between environmental advocates, state and municipal officials, law offices, and laboratories dating from 1968 to 1973.

USEPA (1988) summarized information on surface water quality studies that took place in the watershed. Upstream surface water samples were compared to downstream samples to determine if the surface water quality had been degraded at any of the sites. The most notable impacts were documented at the Chesterfield-Oakdale site, where concentrations of iron in the surface water increased from less than the SMCL to more than 100 times the SMCL downstream. Sulfate concentrations increased by over an order of magnitude, from 20 to 299 mg/L, a bit above the SMCL, while TDS increased from less than the SMCL to 44 times higher than the SMCL downstream. At a sampling point about 1.2 miles downstream from the site, the measured parameters had returned to levels close to the upstream values. The data clearly show damage to surface water from ash disposal in the Hunts Brook Watershed, especially at the Chesterfield-Oakdale site, in addition to groundwater damage at AOCs at the Montville Station that were coal ash disposal areas, although USEPA classified this case as “indeterminate” in its 2007 damage case assessment report (USEPA, 2007).

Sources

Keith, Ed. 2010. Email from Ed Keith, NRG NE Regional Environmental Manager to Juan Perez, USEPA Region 1 (Aug. 5, 2010).

IN HARM’S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

Entity/Company – Location
City of Lakeland - C.D. McIntosh, Jr. Power Plant
3030 East Lake Parker Drive
Lakeland, FL 33805
Polk County
Latitude: 28.084167 Longitude: -81.924167

Determination
Demonstrated on-site damage to groundwater

Probable Cause(s)
Contamination of groundwater from unlined waste disposal units and a coal storage area

Summary
Two unlined coal combustion waste (CCW) landfills and several process wastewater ponds have contaminated groundwater in excess of Maximum Contaminant Levels (MCLs) for arsenic, lead, selenium, cadmium, and other metals at the McIntosh Power Plant. A Consent Order was issued in 2001 to address the problem, but the contamination has continued. Groundwater monitoring in January 2010 found arsenic concentrations exceeding the MCL in fifteen wells monitoring three water-bearing zones of groundwater. The highest concentration for arsenic was 0.0165 mg/L (1.65 times the MCL). Exceedances of Secondary MCLs (SMCLs) for iron, manganese, pH, total dissolved solids, or sulfate have been measured in 32 of 36 wells monitoring the CCW landfill and a coal pile area. The McIntosh Power Plant and its CCW disposal sites are adjacent to Lake Parker, yet no off-site assessments or monitoring have been performed to determine the extent of contamination off-site despite a relatively high number of residences around the lake.
Test of Proof

Although a 2001 Florida Department of Environmental Protection (FDEP) Consent Order identified arsenic, lead, manganese, selenium, cadmium, vanadium, nitrate, and total dissolved solids (TDS) exceeding MCLs and SMCLs in groundwater at McIntosh Power Plant (FDEP, 2001), the contamination continues. Groundwater monitoring in January 2010 documented arsenic contamination above the MCL and iron, pH, sulfate, TDS, and manganese concentrations above SMCLs in water downgradient of CCW units and very close to the McIntosh Power Plant property line (Lakeland Electric, 2010).

As of November 2001, 21 shallow surficial aquifer wells, 11 intermediate (deep surficial aquifer) wells, and 9 deep aquifer wells existed around McIntosh Power Plant’s two CCW landfills, coal pile area, and sludge de-watering area (FDEP, 2001). Additional wells are near the process wastewater ponds and in a “marsh treatment area” along the western property boundary; however, monitoring results are not available for most of these wells because the FDEP does not require the McIntosh Power Plant to sample these wells (FDEP, 2001).

The 2001 Consent Order required McIntosh Power Plant to install additional downgradient groundwater monitoring wells, and included the proposed well locations in the Order (FDEP, 2001). However, no wells in these proposed locations were identified in the January 2010 groundwater sampling event (Lakeland Electric, 2010). In fact, McIntosh Power Plant no longer samples most of the groundwater monitoring wells in the plant operations area west of the CCW landfills, despite the fact that the Consent Order suggested that groundwater in this area was contaminated with unspecified constituents (FDEP, 2001).

Sampling of 36 wells in January 2010 during “interim” groundwater monitoring for the CCW landfills, the CCW landfill sedimentation basins, the coal pile, and the sludge de-watering area found exceedances of the MCL for arsenic (0.010 mg/L) in 14 wells and exceedances of at least one Secondary MCL (SMCL) in 32 wells (Lakeland Electric, 2010).

The arsenic concentration reported in January 2010 associated with the northern CCW landfill was 0.0162 mg/L in well 19S monitoring the shallow aquifer. An arsenic concentration of 0.0159 mg/L was found in well 21D, which monitors the deep aquifer near the northern landfill and sits approximately 40 feet from the northeastern property line and adjacent to an abandoned phosphate mine lake. The maximum arsenic concentration for the southern landfill was 0.0165 mg/L, in well 29S, which monitors the shallow aquifer. The maximum concentration for the northwestern marsh treatment area and coal pile was 0.0159 mg/L, in well 17S, which monitors the shallow aquifer. Arsenic was measured at 0.014 mg/L in well W-9, near the western property boundary and downgradient from the plant and the process wastewater ponds. It should be noted that the McIntosh Power Plant used a very high detection limit for arsenic of 0.0113 mg/L, which is higher than the 0.010 mg/L MCL; therefore, it is impossible to tell from laboratory reports exactly how many wells were contaminated with arsenic at or just below the MCL.

The January 2010 sampling event also found that Well 23I, monitoring the intermediate aquifer and approximately 90 feet from the northern property line, was contaminated above SMCLs for iron (17.66 mg/L), pH (4.09 units), sulfate (394 mg/L), and TDS (615 mg/L).

The highest concentrations of sulfate, both exceeding the SMCL, in the January 2010 sampling event were found around the southern landfill in wells 28S and 29S (monitoring the shallow aquifer), at 1,274 mg/L and 485 mg/L, respectively, the sedimentation basin of the southern landfill in well 6I (monitoring the intermediate aquifer), at 770 mg/L, and near the property line by the northern landfill in well 23I, mentioned above. The highest concentrations of TDS, which were also greater than the SMCL (500 mg/L), were generally associated
with wells that had the highest concentrations of sulfate. The SMCL for pH (6.5 – 8.5 units) was not achieved at 25 of the 36 wells sampled. Lowest values, ranging from 3.94 to 4.41 units, were found in wells monitoring the shallow and intermediate aquifers near the coal pile/sludge stack-out pile, the northern landfill area near the property line, and the southern landfill.

A review of groundwater monitoring reports in the file found no further information on the location of sampling points, rate and direction of groundwater flow, or statistical or trend analysis of monitoring results. Lake Parker water samples (locations not given) are only tested for pH, specific conductance, temperature, and water levels and not for ash metals or other CCW indicator parameters.

** Constituents Involved**

Arsenic, cadmium, lead, manganese, selenium, vanadium, nitrate, iron, sulfate, TDS, and pH

At Risk Population

The shoreline of Lake Parker is densely populated with residences, and the Lake is used for recreational purposes. There are a total of 111 potable water supply wells that are used for commercial purposes and municipal purposes (noted by green marker on the map below) within a five-mile radius of the McIntosh Power Plant, and two private drinking water wells within a two-mile radius of the Plant. In addition, 20 of the 111 commercial and municipal wells are located within a two-mile radius of the plant. Private and public drinking water data was obtained from FDEP in an online geospatial database and mapped using Google Earth. Well records from geospatial database may be incomplete.
Note: There was not enough information available to show the main directions of groundwater flow from the ash disposal areas, but localized shallow groundwater in the landfills probably flows in all directions.

Incident and Date Damage Occurred / Identified
Unauthorized discharges of process water and CCW contaminants to the soil and groundwater occurred between April 1997 and June 2001 (FDEP, 2001) and discharges have continued into 2010.

Regulatory Actions
FDEP issued a final Consent Order on December 7, 2001 (FDEP, 2001). FDEP also issued a Warning Letter on November 16, 2000 for failure to notify FDEP of parameter exceedances during quarterly groundwater monitoring, failure to submit required annual reports from 1990 to 1999, and for discharges of process wastewater to the storm water drainage system (FDEP, 2001).

The Consent Order identified impacts to groundwater and required additional groundwater monitoring along the western property boundary downgradient from the process wastewater ponds, between Lake Parker and the neutralization basins, at the southern landfill, and at a “tipping area” (FDEP, 2001). Lake-level gauges were required for on-site and nearby off-site lakes to determine elevation relative to the groundwater.

FDEP required additional “assessment activities” in 2001 to determine if contamination had migrated off-site (FDEP, 2001). According to a 2010 telephone conversation with FDEP to determine the status of this off-site migration determination, FDEP staff stated that the Consent Order did not require off-site monitoring and therefore none has been performed (Watson, 2010). Further, FDEP stated that identifying and sampling off-site drinking water wells would be specified in a Contamination Assessment Plan (CAP), if FDEP saw the need to do so (Watson, 2010). A CAP was not available in the files reviewed to determine what actions, if any, had been completed relative to any off-site assessment activities.

Nine years ago, the final Consent Order required that an Interim Groundwater Monitoring Plan (IGWMP) be submitted within 30 days of the effective date of the Order, a CAP be implemented within 90 days, and a Source Characterization Work Plan (SCWP) be implemented within 180 days (FDEP, 2001). The Consent Order also required that Lakeland pay $180,691 in civil penalties (FDEP, 2001).

Wastes Present
Flue gas desulfurization (FGD) sludge, fly ash, and bottom ash (FDEP, 2001)

Type(s) of Waste Management Unit
Two unlined CCW landfills that contain FGD sludge, fly ash, and bottom ash exist at the plant (FDEP, 2001). The plant became operational in 1981 (FDEP, 2001).

The southern landfill sedimentation pond and the de-watering and stacking area (for process wastewater dredged sludge) were built on top of an abandoned phosphate mine pit (FDEP, 2001).

An undefined “marsh treatment system” along the northwestern, western, and southwestern property line has been used for unspecified CCW treatment (FDEP, 2001).

Active or Inactive Waste Management Units
Active

Hydrogeologic Conditions
Apparently there are no maps of potentiometric surfaces or the direction of groundwater provided in groundwater monitoring reports and, as a result, neither FDEP nor the McIntosh Plant personnel definitively know what the localized direction of groundwater is in water bearing zones around disposal units. Three layers of groundwater are monitored at the CCW landfills and coal storage area (FDEP, 2001).

The groundwater rate and direction of flow are likely influenced by the abandoned phosphate mines to the northwest of the plant, construction fill areas, placement of low-permeability FGD sludge as liners, and the presence of concrete structures (FDEP, 2001).

Sources

Watson. 2010. Telephone conversation with Stephanie Watson, Environmental Specialist III, FDEP, Solid Waste Program (May 25, 2010).
Entity/Company – Location
Berkshire Hathaway, d/b/a MidAmerican Energy Company - George Neal Station North Landfill
1151 260th St.
Sergeant Bluff, IA 51054
Woodbury County
Latitude: 42.326658 Longitude: -96.379203

Determination
Demonstrated damage to groundwater moving off-site (into the Missouri River on the western edge of the property)

Probable Cause(s)
Leaching of coal combustion waste (CCW) constituents to shallow aquifer from CCW monofill (landfill only accepting CCW)

Summary
CCW has been placed in a monofill at the Neal North plant on the Missouri River since 1978. When a groundwater monitoring program was implemented in 2001, every downgradient well in the shallow and deeper alluvial aquifer exceeded the federal Maximum Contaminant Level (MCL) for arsenic, with average values in all but one of the wells ranging from 0.0251 to 0.0882 mg/L (2.5 to 8.8 times the MCL) and a maximum concentration recorded of 0.218 mg/L (22 times the MCL). Available information indicates that the monofill is the primary source of arsenic in the shallow and deep aquifers, though there may be some contribution of arsenic to the deep aquifer from an upgradient source. High levels of manganese, iron, and sulfate have also been found in groundwater downgradient of the CCW monofill.
Test of Proof

Groundwater monitoring was first implemented in 2001. The first groundwater samples found concentrations of arsenic that exceeded the MCL in all downgradient monitoring wells and one incorrectly designated “upgradient” well. High concentrations of manganese were also found in all shallow wells and very high concentrations of sulfate were found in one shallow well. In 2008, sampling for iron began, and high concentrations were found in all shallow wells. The results of groundwater sampling for arsenic, iron, manganese, and sulfate from 2001 to 2008 are summarized as follows (see Table 1 for actual values):

- **Arsenic.** Average values in three downgradient shallow wells ranged from 2.5 to 3.2 times the MCL, with the highest maximum reading of 5.4 times the MCL. Average concentrations in the incorrectly designated “upgradient” shallow well (MW15R) and one downgradient well (MW19) were less than the MCL, but have had maximum concentrations near or above the MCL. Average values in two downgradient deep wells ranged from 5.9 to 8.8 times the MCL with a maximum of 22 times the MCL. Average concentrations in the “upgradient” deep well (MW16) were more than two times higher than the MCL. See discussion below for evidence that MW15R and MW16 are incorrectly identified as upgradient wells.

- **Iron.** Groundwater sampling for iron only began in 2008. Concentrations in three downgradient shallow wells were very high, ranging from 34 to 46 times the SMCL (0.3 mg/L). Concentrations in the “upgradient” shallow well (7.7 times SMCL) and one downgradient well (MW19—10 times SMCL) were also high.

- **Manganese.** Average concentrations in all shallow wells exceeded the USEPA Lifetime Health Advisory Level (LTHA) (0.3 mg/L). The highest average concentration (MW19) was 27 times the LTHA and 162 times the SMCL (0.05 mg/L).

- **Sulfate.** Average concentrations in downgradient shallow well MW19 were six times the SMCL (250 mg/L).

Although MW15R and MW16 are classified as upgradient wells, potentiometric maps show groundwater to be flowing from the monofill toward these wells (MWH, 2008). Additionally, there are three ash ponds at the site and the location of one, Pond 3, adjacent to MW15R and MW16 could be contributing arsenic to these wells, although there are no data to evaluate possible impacts of these ponds on groundwater readily available for review. There is little doubt that the high concentrations of arsenic in the shallow aquifer come from the CCW at the monofill. Average arsenic concentrations in the “upgradient” shallow well MW15R are less than the MCL while average concentrations of MW1R, MW3R, and MW5R, which intercept groundwater flow from the monofill before it reaches the Missouri River, are all well above the MCL. The reason for the high concentrations of arsenic in the deep aquifer, which average two to four times higher than comparable shallow downgradient wells, is less clear, but available evidence suggests that the CCW monofill is the primary source of arsenic in this aquifer, although a consultant to MidAmerican Energy Company has suggested that there are upgradient sources of arsenic (MWH, 2006). Lines of evidence that support the monofill as being the main source of arsenic include:

- There is a downward gradient between the shallow and deep aquifer. The fact that concentrations are lower in the shallow aquifer may be explained by the shallow wells missing preferential downward pathways of higher shallow concentrations moving into the deep aquifer.

- The average concentration in the “upgradient” MW16 is one-quarter the average concentration at downgradient MW4. If there were a significant upgradient source, concentrations would be expected to be at least as high in MW16.

- A new “upgradient” well about 1,000 feet east of the East Monofill area was installed in 2008 and showed a concentration of arsenic exceeding the MCL at 0.0129 mg/L. It is possible that this well is showing arsenic from an upgradient source. However, this well, though new, is located in an expansion area which has already received CCW (see satellite photo). Furthermore, the concentration in this well is only 15% that of in downgradient MW4 which is in the direct flow path for groundwater from MW14. If there was a significant upgradient source, then the concentrations in MW14 would be expected to be similar to that in MW4.
IA DNR has asked MidAmerican Energy to provide more evidence for their argument that the high concentrations of arsenic are from off-site sources or submit a plan to determine the extent of the plume (IADNR, 2007).

Table 1. Groundwater Sampling Results for Shallow and Deep Aquifer, Neal North Ash Monofill 2001 to 2008 (all values in mg/L)

<table>
<thead>
<tr>
<th>Monitoring Well*</th>
<th>Arsenic</th>
<th>Iron**</th>
<th>Manganese</th>
<th>Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Maximum</td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>MW15R</td>
<td>0.0059</td>
<td>0.0098</td>
<td>2.32</td>
<td>2.88</td>
</tr>
<tr>
<td>shallow aquifer, “upgradient”*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW1R</td>
<td>0.0252</td>
<td>0.0298</td>
<td>10.10</td>
<td>1.72</td>
</tr>
<tr>
<td>shallow aquifer, downgradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW3R</td>
<td>0.0322</td>
<td>0.0540</td>
<td>13.80</td>
<td>3.36</td>
</tr>
<tr>
<td>shallow aquifer, downgradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW5R</td>
<td>0.0251</td>
<td>0.0300</td>
<td>10.90</td>
<td>2.08</td>
</tr>
<tr>
<td>shallow aquifer, downgradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW19</td>
<td>0.0046</td>
<td>0.0105</td>
<td>3.08</td>
<td>8.1</td>
</tr>
<tr>
<td>shallow aquifer, downgradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW14</td>
<td>***</td>
<td>0.0129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deep aquifer, “upgradient”*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW16</td>
<td>0.0234</td>
<td>0.0327</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>deep aquifer, “upgradient”*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW4</td>
<td>0.0882</td>
<td>0.0992</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>deep aquifer, downgradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW20</td>
<td>0.0588</td>
<td>0.218</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>deep aquifer, downgradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Satellite photo for location of monitoring wells
** See text discussion for evidence that these wells are improperly classified as upgradient.
*** Only one year reported (2008)

Boldface = MCL, SMCL or LTHA exceeded

Constituents Involved
Arsenic, iron, manganese, and sulfate

At Risk Populations
The risk evaluation report prepared by MidAmerican Energy Company consultants identified no known human receptors or water wells downdgradient of the CCW Monofill. However, the report did note that the closest water wells are two wells MidAmerican Energy uses for drinking water at the Neal North facility. These wells were sampled four times for arsenic in 2002, but the detection limit (0.08 mg/L) was 8 times higher than the current MCL, making it impossible to determine whether there were any exceedances of the MCL up to eight times the MCL.

Mounding (when CCW disposal areas cause higher elevations of groundwater in the disposal area, which creates localized flow of groundwater in all directions from the disposal area, including upgradient with respect to the regional groundwater flow direction) in the disposal area may cause localized flow in other directions.

Data obtained from Iowa State University’s private and public well data GIS layer reveal 8 public drinking water sources within a five mile radius and two private drinking water wells within a two mile radius. Iowa State University has been working with the Iowa DNR for three years to convert paper records to a single GIS dataset. Because data goes from well drillers’ logs to the state and then to the University’s GIS department, it is highly probable that some wells, both private and public, are missing from the dataset. The status of groundwater usage in the surrounding area and down river should also be ascertained, and off-site wells should be sampled.

Incident and Date Damage Occurred / Identified

Exceedances of arsenic MCL were measured in all downgradient wells when groundwater was first sampled in June, 2001 and have continued since 2001.

Regulatory Action
No enforcement action has been taken at the Neal North Generating Facility Ash Monofill. MidAmerican Energy Company submitted a risk evaluation for arsenic to IA DNR in 2006 (MWH, 2006b), and IA DNR requested more data to support the conclusion in the risk evaluation attributing the high concentrations of arsenic to off-site sources or the submission of a plan to address the arsenic plume (IA DNR, 2007).

Wastes Present
Coal fly ash and bottom ash

Type(s) of Waste Management Unit
The Neal North Generating Facility Ash Monofill has been receiving CCW since 1978 and was originally permitted in May 1997. It currently operates under a permit issued on April 19, 2001. There are two main fill areas, a 32-acre west fill area, which receives primarily fly ash, and a 50-acre east fill area, which receives various types of coal combustion waste (MWH, 2006). Permit amendments, which could include use of a liner and expansion plans to extend the filling to the east and south, are currently under review at IA DNR (MWH, 2009). There are also three surface impoundments at the power plant (MidAmerican Energy, 2009): 12.2-acre Pond #1; a 26.9-acre Pond #2 (placed in service in 1972); and a 76.1-acre Pond #3 (placed in service in 1975).

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
A 2006 hydrogeologic investigation report prepared in connection with the proposed expansion of the CCW monofill updates earlier hydrogeologic studies conducted in 1997 (MWH, 1997 and 2006). The monofill rests on alluvial sediments of the Missouri River. A shallow aquifer is present in finer-grained near-surface alluvium and a deeper aquifer is present in thick sand and gravel deposits. The natural flow of both aquifers is to the southwest toward the Missouri River. There is a general vertical hydraulic gradient between the shallow and deeper aquifer (MWH, 2006), which suggests that contaminants in the shallow aquifer are able to migrate to the deeper aquifer. Mounded water table conditions are evident in the area of the monofill, resulting in localized flow to the east and south (see Figure 3, MWH, 2008).

Sources
(Unless otherwise indicated, cited documents are available at: https://programs.iowadnr.gov/solidwaste/reports/DocumentDNA.aspx by searching for Permit No. 97-SDP-12-95.)

IA DNR. 2007. Iowa Department of Natural Resources (IA DNR), 2007, Letter from Amy Davidson, Environmental Engineer, to Dana Ralston, MidAmerican Energy (June 28, 2007) (rejecting the Arsenic Risk Assessment and asking for further information).

Entity/Company – Location
Berkshire Hathaway, d/b/a MidAmerican Energy Company - George Neal Station South Ash Monofill
2761 Port Neal Cir.
Salix, IA 51052
Woodbury County
Latitude: 42.301944 Longitude: -96.358012

Determination
Demonstrated damage to groundwater moving off-site, (as indicated by downgradient contaminant levels exceeding state standards that indicate contaminants are migrating in groundwater)

Probable Cause(s)
Leaching of coal combustion waste (CCW) constituents to shallow aquifer from CCW monofill

Summary
CCW has been placed in a monofill (a landfill receiving only CCW) at MidAmerican Energy’s Neal South Power Plant on the Missouri River south of Sioux City since the early 1980s. When a groundwater monitoring program was implemented in 2000, average concentrations of arsenic in two downgradient wells ranged from 0.011 to 0.035 mg/L, 1.1 to 3.5 times the Maximum Contaminant Levels (MCL) and a maximum concentration was more than 8 times the MCL.

High levels of manganese, iron, sulfate, barium, selenium, and zinc have also been found in groundwater downgradient of the CCW monofill. There are indications that the only “upgradient” monitoring point has been affected by CCW constituents as a result of groundwater mounding within the CCW monofill (elevated levels of groundwater in the disposal area that causes localized flow of contaminants in an upgradient direction).
Test of Proof

Groundwater sampling began in 2000. Arsenic exceeded the MCL in MW2 in the first year of sampling, and arsenic concentrations have continued to exceed the MCL. High concentrations of iron and manganese have been present in all wells since monitoring began, and high concentrations of sulfate were more localized to a few wells. The results of groundwater sampling for arsenic, iron, manganese, and sulfate from 2000 to 2008 are summarized as follows (see Table 1 for actual values):

- **Arsenic.** Average values in two downgradient wells (MW2 and MW10) ranged from 1.1 to 3.5 times the MCL for drinking water with a maximum of 8.4 times the MCL. There is an upward trend in the concentrations in MW2. Average concentrations in the upgradient monitoring well (MW4) and one downgradient well (MW11) were less than the MCL.

- **Iron.** Average concentrations in two downgradient wells (MW2 and MW10) were very high, ranging from 25 to 32 times the Secondary MCL (SMCL), and upward trends were evident in both wells. Average concentrations in the upgradient well were moderately high (2.5 times SMCL).

- **Manganese.** Average concentrations in two downgradient wells (MW2 and MW10) were moderately high (6 times the Lifetime Health Advisory Level (LTHA)). However, average concentrations in the upgradient well and one downgradient well (MW11) were higher (10 and 12.5 times the LTHA respectively). Average concentrations for the downgradient monitoring wells ranged from 36 to 75 times the SMCL.

- **Sulfate.** Average concentrations in one downgradient well (MW11) were somewhat above the SMCL. Average concentrations in the other three wells are less than the SMCL, but the upgradient well and downgradient MW10 show possible upward trends in concentrations.

The IA DNR uses Upgradient Control Limits (UCLs) to identify ash constituents that may be moving off-site from ash disposal areas. The UCL is calculated as the historic average in upgradient monitoring wells plus two standard deviations. When downgradient concentrations exceed the UCL, it is an indication that groundwater has been affected by migration of ash constituents. The concentration of barium at MW2 has exceeded the UCL since monitoring began (average 0.230 mg/L, about one-tenth the MCL), and other downgradient wells sometimes exceed the UCL for this constituent. The UCL for selenium (0.0025 mg/L) has been exceeded in MW10 and MW11 several times (0.0052 to 0.0453 mg/L). Average concentrations for zinc have exceeded the UCL (0.017 mg/L) in all three downgradient wells (0.022 to 0.038 mg/L).

The upgradient monitoring well MW4 is close to the edge of the CCW monofill, and the relatively high concentrations of iron, manganese, and sulfate in this well suggest the possibility that it is affected by ash constituents as a result of groundwater mounding within the monofill, which is elevated 20 feet above the floodplain. There are not enough monitoring wells at this monofill to determine whether mounding has taken place, but mounding is evident at the Neal North CCW monofill which is in a similar hydrogeologic setting. Mounding is a process that occurs when CCW disposal areas cause higher elevations of groundwater within the disposal area that creates localized flow of groundwater in all directions from the disposal area, including upgradient with respect to the regional groundwater flow direction. The association of high arsenic and high iron concentrations in MW2 and MW10 is consistent with the redox zone model for variations in arsenic concentrations in groundwater described by Hensel and Kovatch (2007). The relatively low concentrations of arsenic in downgradient MW11 may be the result of different redox conditions. The redox model relates the mobility of arsenic in an aquifer when reducing conditions (low oxygen levels) are present in an aquifer. Arsenic tends to be more mobile when iron-reducing bacteria are active and less mobile when sulfate reducing bacteria are active.
Table 1. Groundwater Sampling Results Neal South Ash Monofill 2000 to 2008 (mg/L)

<table>
<thead>
<tr>
<th>Monitoring Well*</th>
<th>Arsenic Average</th>
<th>Arsenic Maximum</th>
<th>Iron Average</th>
<th>Iron Maximum</th>
<th>Manganese Average</th>
<th>Manganese Maximum</th>
<th>Sulfate Average</th>
<th>Sulfate Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW4** “upgradient”</td>
<td>0.001</td>
<td>0.0019</td>
<td>1.06</td>
<td>3.3</td>
<td>2.97</td>
<td>3.9</td>
<td>184</td>
<td>288</td>
</tr>
<tr>
<td>MW2 downgradient</td>
<td>0.035</td>
<td>0.0839u</td>
<td>7.57</td>
<td>20.6u</td>
<td>1.79</td>
<td>2.04</td>
<td>76</td>
<td>100</td>
</tr>
<tr>
<td>MW10 downgradient</td>
<td>0.011</td>
<td>0.0434</td>
<td>9.61</td>
<td>19.3u</td>
<td>1.99</td>
<td>2.7</td>
<td>178</td>
<td>335</td>
</tr>
<tr>
<td>MW11 downgradient</td>
<td>0.001</td>
<td>0.002</td>
<td>0.28</td>
<td>0.55</td>
<td>3.76</td>
<td>6.4</td>
<td>271</td>
<td>370</td>
</tr>
</tbody>
</table>

* See Satellite photo for location of monitoring wells
**May be affected by flow of contaminants from the monofill as a result of mounding.

Boldface = exceedance of MCL, SMCL or LTHA

Constituents Involved
Arsenic, barium, selenium, zinc, iron, manganese, sulfate

At Risk Populations
MidAmerican Energy did not address the question raised by IA DNR (2005) of whether there are any off-site receptors such as private residential wells or other uses of water that may be adversely affected by the CCW contamination documented at the Neal Station South Ash Monofill. Data obtained from the University of Iowa’s GIS department shows a total of five public drinking water sources within a five-mile radius of Neal South (two of which are downstream of the Neal South site) and two private drinking water sources within a two-mile radius. The University Of Iowa has been working with the Iowa DNR for three years to convert paper well records to a single GIS dataset. Because data goes from well drillers’ logs to the state and then to the University’s GIS department, some wells, both private and public, may be missing from the dataset.
Incident and Date Damage Occurred / Identified
Arsenic concentrations exceeding the MCL were measured at MW2 the first year monitoring began in 2000. Exceedances of SMCLs for iron, manganese, and sulfate have been measured in one or more wells since monitoring began.

Regulatory Action
Despite high levels of arsenic and other contaminants in downgradient shallow groundwater, IA DNR has not required any off-site monitoring, or even monitoring at an appreciable distance from the ash ponds. IA DNR has not taken any enforcement actions with respect to the contaminated groundwater, however, in 2005, IA DNR specified that future Annual Water Quality Reports from MidAmerican Energy should: (1) discuss the potential for groundwater mounding and its influence on upgradient and downgradient wells; (2) evaluate all upgradient groundwater points to determine whether they are currently functioning as valid upgradient sampling points based on groundwater table contour map and water quality data results; and (3) discuss water quality data results with respect to potential for leachate migration beyond the waste boundary and, if MCLs are exceeded, provide information on potential receptors (IA DNR, 2005). MidAmerican Energy’s 2008 Annual Water Quality Report (MWH, 2008), however, does not address any of the points above.

Wastes Present
Fly ash and bottom ash
Type(s) of Waste Management Unit
A 30-acre CCW ash monofill, which first received a permit in 2000, about twenty years after the power plant at the site began operating. Thus, extensive CCW contamination and pollutant migration may have occurred well before any safeguards were in place at the site.

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
The monofill rests on alluvial sediments about three-quarters of a mile east of the Missouri River. The natural direction of groundwater flow is west toward the Missouri River. Paired shallow (23 to 28 feet deep) and deeper wells (49 to 59 feet deep) show very little difference in head, indicating lateral flow is dominant with little vertical component. The ash monofill is 20 feet higher than the surrounding area, and groundwater mounding may have altered groundwater flow directions in the vicinity of the monofill.

Sources
(Unless otherwise indicated, cited documents are available at: https://programs.iowadnr.gov/solidwaste/reports/DocumentDNA.aspx, by searching for Permit No. 97-SDP-13-98.)

Entity/Company – Location
Alliant Energy d/b/a Interstate Power and Light - Lansing Station Ash Ponds and Landfill
2320 Power Plant Dr.
Lansing, IA 52151
Allamakee County
Latitude: 43.334954 Longitude: -91.167075

Determination
Demonstrated damage to on-site groundwater

Probable Cause(s)
Leaching of CCW constituents from either the CCW landfill or impoundment

Summary
Arsenic has been measured at more than twice the Maximum Contaminant Level (MCL) in a groundwater monitoring well (MW11) located between Lansing Station’s ash ponds and coal combustion waste (CCW) landfill. Manganese has also been measured far above USEPA’s Lifetime Health Advisory Level and iron and manganese have been measured far above Secondary MCLs (SMCL). It is difficult to fully assess the extent of groundwater contamination because the groundwater monitoring network does not appear to be designed to detect contamination that may be leaving the site, there is no off-site monitoring, and other downgradient monitoring wells do not appear to be located effectively in the path of shallow groundwater flow.
Test of Proof
Groundwater monitoring well MW11 has detected contamination from CCW disposal at the Lansing Plant from 2002 onward. Groundwater monitoring samples from MW11 shows the following:

- **Arsenic** averages 0.0143 mg/L (1.4 times federal MCL). Maximum value is 0.023 mg/L (2.3 times MCL).
- **Iron** averages 13.1 mg/L (43 times the SMCL). Maximum value is 28 mg/L (93 times SMCL).
- **Manganese** averages 7.1 mg/L (142 times the SMCL). Maximum value is 10 mg/L (200 times the SMCL).
- **Sulfate** averages 243 mg/L (almost equal to the SMCL). Maximum value is 380 mg/L (about 1.5 times SMCL).

The groundwater monitoring data from MW11 is problematic because the well is located within the seasonal fluctuations of the water table, meaning that groundwater samples could be collected in only three out of ten sampling events. In addition, the location of the well between the CCW landfill (to the east) and the Ash Settling Pond (to the west) makes it difficult to determine which CCW disposal area is the source of the contamination (if not both areas) BT² Inc., 2005). Lastly, the data is derived from only three sampling events from 2002 through 2004, too few to sufficiently assess trends.

The groundwater monitoring network does not appear to be designed to detect contamination that may be leaving the site. For example, MW4 and MW5, located on the north side of the landfill, are identified as “downgradient” wells, but their data do not show significant differences from “upgradient” well MW6, and MW4 and MW5 do not appear to be in a location that would detect the migration of contaminants off-site. As discussed under the Hydrogeologic Conditions section, a more likely flow path for contaminated groundwater is toward the alluvium in the stream valley, southwest and west of the landfill, which is where contaminants have been detected in MW11 (located west of the north end of the landfill). Furthermore, there are no groundwater monitoring wells installed for the specific purpose of identifying possible groundwater contamination by the ash ponds.

Constituents Involved
Arsenic, iron, manganese, and sulfate

At Risk Population
Review of the USGS topographic map and satellite photos indicates that there are about a dozen private residences within a thousand feet of the landfill and ash ponds and about three dozen residences within a mile. In this area private wells are the main source of drinking water.

However, private well records from IA DNR and Iowa’s State University Geographic Information Systems (GIS) clearinghouse records indicated 33 private drinking water wells within a two-mile radius of the Lansing plant and five public drinking water sources within a five-mile radius. Iowa State University has been working with the IA DNR for three years to convert paper records to a single GIS dataset. Because data goes from well drillers’ logs to the state and then to the university’s GIS department, it is highly probable that some wells, private and public, are missing from the dataset.
Incident and Date Damage Occurred / Identified
Groundwater monitoring results first documented exceedances of the MCL for arsenic and secondary MCLs for iron, manganese, and sulfate in a March 8, 2002 sampling event.

Regulatory Action
IA DNR has required that MW11 be evaluated to determine why it has been difficult to obtain groundwater samples and to replace it with a water-bearing well if it continues to remain dry (Koger, 2009), but has not required installation of monitoring wells to evaluate possible groundwater impacts of the ash ponds northwest of the landfill or at any off-site location.

Wastes Present
Coal fly ash and bottom ash

Type(s) of Waste Management Unit
The Ash Landfill (IA DNR Permit 03-SDP-05-01) first received coal ash between 1985 and 1987. A current landfill permit was issued by IA DNR on September 11, 2003. Also there is a 14.8-acre Main Ash Pond and 0.2-acre Lower Ash Pond northeast of the landfill (Alliant Energy, 2009a), for which no groundwater monitoring is required.

Active or Inactive Waste Management Unit
Active
Hydrogeologic Conditions
Alluvium/colluvium of varying thicknesses lies over interbedded sandstones and siltstones in the area of the CCW Landfill. Alluvial deposits of the Mississippi River are at least 50 feet thick in the vicinity of the Power Plant north of the current Ash Pond. A 1982 soil boring within the area of a closed ash lagoon found a shallow water table in alluvial silt and sand about 25 to 30 feet thick (Howard R Green Company, 1995). The ash landfill and ponds are underlain by interbedded fine sandstones and siltstones of the Lone Rock Formation, which overlies the regional Dresbach Aquifer. Monitoring wells are completed in the Lone Rock Formation and the MW4 and MW5 cluster shows an upward hydraulic gradient, consistent with a groundwater discharge area. The flow of the regional aquifer is north-northwest toward the Mississippi River (BT² Inc. 2001). However, the potentiometric map of the area does not appear to take into account the localized, more westerly flow in shallow groundwater in the alluvium of the valley in which the CCW landfill and impoundments are located. The alluvium, which is generally more permeable than the fine-grained sandstones of the bedrock aquifer, probably represent a near-surface groundwater system that creates a preferential flow path for contaminants to the west-northwest. The presence of contaminants in MW11 is consistent with this interpretation.

Additional Narrative
The Lansing Power Station was first constructed in 1948, with additional units added in 1957 and 1976. The location(s) of ash disposal areas other than the ash ponds and landfill discussed here could not be readily determined from IA DNR files.

Sources

Entity/Company – Location
Midwest Generation Joliet Generating Station 9, Lincoln Stone Quarry Landfill
1601 South Patterson Rd.
Joliet, IL 60436
Will County
Latitude: 41.493314 Longitude: -88.103128

Determination
Demonstrated damage to off-site groundwater, drinking water, and surface water moving off-site

Probable Causes
Leaching of coal combustion waste (CCW) constituents from bottom ash and slag landfill and associated ponds

Summary
Since 1962, Midwest Generation has disposed of its bottom ash and slag from the Joliet 9 and Joliet 29 Generating Stations in the unlined Lincoln Quarry Ash Landfill (Landfill). Since 1996, the Landfill has been exempt from complying with Illinois Class I Groundwater Protection Standards within the Landfill, and the Illinois Environmental Protection Agency (IEPA) has applied relaxed standards for boron, cadmium, selenium, and molybdenum that allow groundwater with concentrations up to 52 times standards for protection of public health to flow off-site. As of early 2007, unsafe concentrations of arsenic, boron, and molybdenum were flowing off-site to the south. IEPA issued a Notice of Violation (NOV) in response to the groundwater contamination in late August 2009. The NOV identified 50 exceedances of groundwater quality standards in ten wells, including high concentrations of arsenic, barium, boron, copper, and molybdenum. Arsenic was measured in two off-site groundwater monitoring wells at 0.022 to 0.083 mg/L (2.2 to 8.3 times the Illinois Class I Groundwater standard of 0.01 mg/L). The locations of the groundwater monitoring wells indicate that contamination is flowing from the CCW Landfill off-site to the southeast, south, west, and north.
The IEPA Bureau of Water recently found the CCW Landfill to be in an area with very high geologic vulnerability and a high potential for potable well contamination. There are 94 wells within a mile of the CCW Landfill. Drinking water wells up to a thousand feet south of the Landfill show evidence of degradation of water quality, and there is evidence to suggest that contamination is moving toward the Smiley Subdivision northeast of the Landfill. Midwest Generation has bought out nearby residents or had deeper wells drilled for residents. Only limited sampling has been done by IEPA to assess the extent of contamination in private drinking water wells. As of mid-2010, there was no evidence that IEPA had taken significant actions to address the contamination flowing off-site in violation of the CCW Landfill operating permit.

Test of Proof

The Lincoln Stone Quarry CCW Landfill has been used as a disposal facility for bottom ash and slag from two coal-fired generating stations (Joliet 9 and 29) since around 1962. The chronology presented below shows that contamination of groundwater by coal ash at the Lincoln Quarry Ash Landfill has been known since at least the mid-1990s, and that actions by Midwest Generation and IEPA have been largely ineffective in addressing the problems.

- In May 1994, an application for Significant Landfill Permit Modification documented exceedances of the applicable groundwater quality standard for boron, selenium, manganese, sulfate, total dissolved solids (TDS), and fluoride and acknowledged that groundwater quality was degraded due to arsenic, cadmium, molybdenum, zinc, pH, ammonia, chloride, potassium, sodium, and total organic carbon (TOC) levels. The application further noted that any contaminants derived from CCW can migrate to downgradient areas and to the river bank area “with no significant reduction in concentration” (Driver, 2009).
- IEPA permit reviewer notes for the Landfill dated August 1, 2002 and October 15, 2003, state that the groundwater sampling “indicates that the site has caused statistically measured impacts on downgradient groundwater quality” (Driver, 2009).
- In 2004, Andrews Engineering submitted to IEPA, on behalf of Midwest Generation, a proposed “assessment monitoring program” to address confirmed exceedances of several pollutants. This submittal also clearly acknowledged that inward gradient was not being maintained at the Landfill’s Main Quarry (Driver, 2009).
- Midwest Generation’s February 15, 2005 submittal (Log No. 2005-058) acknowledged that the Des Plaines River is a “major area of discharge for the Silurian dolomite aquifer,” and identified elevated concentrations of pollutants associated with the CCW Landfill operations in the groundwater monitoring wells located along the River. The same submittal also acknowledged that monitoring wells located on the south side of the Landfill (G38 and G39), which had been permitted as upgradient wells, were no longer “upgradient,” and proposed the installation of a new, “upgradient” well on the south side of the CCW Landfill—Well G46 (Driver, 2009).
- By the end of 2005 and 2006, submittals to IEPA made on behalf of Midwest Generation conceded that there were no longer any upgradient monitoring well locations that could be considered upgradient for shallow zone conditions. The October 13, 2005 Significant Modifications Application (Log No. 2005-413) concluded that “current water levels in the Main Quarry and the shallow monitoring wells indicate that there is an outward gradient from the Main Quarry such that groundwater movement is to the south, west, and north.” Midwest Generation’s consultants, KPRG, confirmed to IEPA on February 22, 2006 that water level measurements in all of the existing monitoring well locations around the perimeter of the CCW Landfill demonstrated the loss of hydraulic gradient at the Landfill. This submittal proposed the installation of a new shallow zone monitoring well in an off-site location and stated that “evaluations are also being performed relative to potential corrective measures which may be implemented” to address the loss of hydraulic gradient (Driver, 2009).
- In April 2006, Midwest Energy conducted sampling of 18 private wells on Brandon Road along the east side of the Landfill and south to Laraway Road about 4,000 feet south of the southeast corner of the landfill. Only boron (and no other ash-related contaminants) was analyzed in the samples. The results were reported to the residents in May 2006 (Arcadis, 2006). Concentrations of boron in two wells exceeded 1.0 mg/L, with a maximum being 1.5 mg/L – far above the natural background concentration,
which has been identified by Midwest Generation’s consultant to be around 0.3 mg/L in the local carbonate rocks in the vicinity of the Quarry (KPRG, 2008c). Boron concentrations in six other wells ranged between 0.33 to 0.71 mg/L, also above natural background concentrations. Assuming that the wells with elevated boron are from residences closest to the CCW Landfill, it appears that groundwater quality has been degraded in wells possibly up to 1,000 feet south of the Landfill. The results of this sampling led Midwest Generation to either buy out or drill deeper wells for the residences south of the Landfill. Nothing has been done to systematically sample private wells in the Smiley neighborhood northeast of the Landfill despite the fact that, as discussed in the next bullet, groundwater modeling indicates migration of contaminants in that direction as well (Thompson, 2010).

- In response to concerns that dewatering of the Brandon Road/Boyd Quarry east of the landfill would cause contaminants to migrate toward the residential area, groundwater modeling found that a boron contaminant plume with concentrations greater than 2.0 mg/L (Illinois Class I Groundwater Standard) would discharge into the dewatered Quarry within 5 years, and that the 1.0 mg/L iso-concentration line for boron would extend more than 1,000 feet into the Smiley residential area to the northeast (KPRG, 2008c). The Annual Groundwater Flow Evaluations submitted by KPRG to IA EPA for the Midwest Generation CCW Landfill for 2006 to 2008 confirm a change in direction of groundwater flow at the Landfill and concede that the change in direction of groundwater flow “is also a change from the conditions that existed at the time of the adjusted standard for the facility” (Driver, 2009).

- KPRG’s 2007 Annual Report for the Landfill, submitted on behalf of Midwest Generation, showed high concentrations of arsenic, boron, and molybdenum and pH above applicable groundwater quality standards in well G47S (four-quarter average: arsenic 0.045 mg/L – maximum 0.10 mg/L; boron 6.46 mg/L – maximum 9.1 mg/L; molybdenum 0.775 mg/L – maximum 1.3 mg/L; pH of 9.98; and also maximum of 1.9 mg/L fluoride) and well G48S (four-quarter average: arsenic 0.025 mg/L with upward trend; boron 9.2 mg/L – with upward trend; molybdenum 2.54 mg/L – maximum 2.9 mg/L, more than 70 times the USEPA LTHA; pH of 9.14 with upward trend). IEPA’s applicable groundwater quality standards (AGQSs) for the first quarter of 2008 were exceeded for eight dissolved parameters (arsenic, boron, molybdenum, ammonia, chloride, sodium, and fluoride), and concentrations of total copper and nitrate exceeded the AGQS (KPRG, 2008c).

On August 31, 2009, IEPA issued a Notice of Violation (NOV) to Midwest Generation for “failure to operate a leachate collection and management system that assures the protection of Class I potable resource groundwater” (IEPA, 2009a). The NOV cited exceedances of AGQS between July 14 to August 31, 2009 at the site, as summarized below:

- Ten wells were identified where AGQS violations were found, including “upgradient” G38S, four wells within zone of attenuation (G30S, R08S, G47S, G48S) and five compliance wells (G31S&D, G41S&D, G42D). Of these wells, G38S, G47S, and G48S and the five compliance wells are from 150 to 200 feet beyond the edge of the landfill and are called off-site wells in the discussion below.

- There were a total of 50 exceedances for individual monitoring parameters, including arsenic, barium, boron, copper, molybdenum, sulfate (maximum 493 mg/L; AGQS 493 mg/L), TDS (maximum 1300 mg/L, AGQS 112 mg/L), pH (maximum 9.98, AGQS maximum 8.56), ammonia (maximum 5.3 mg/L, AGQS 1.57 mg/L), chloride (190 mg/L, AGQS 144 mg/L), dissolved nitrate and sodium (470 mg/L, AGQS 165 mg/L).

- There were four exceedences for arsenic at off-site wells G47S and G48S (0.022 to 0.083 mg/L, 2.2 to 8.3 times the Illinois Class I Groundwater standard of 0.01 mg/L).

- There were six exceedences in four wells for boron with the highest exceedences at off-site wells G47S and G48S (8.7 to 10.0 mg/L, four to five times the Illinois Class I Groundwater standard of 2.0 mg/L).

- There were two exceedences for molybdenum in off-site well G48S (1.6 to 2.7 mg/L, 40 to 67 times USEPA’s LTHA).

- All the exceedences for arsenic and molybdenum were in G47S and G48S, indicating that a significant contaminant plume is migrating to the southeast from the Landfill.
- Exceedances of boron were in the southeast wells, G47S and G48S, but also G46S and R08, indicating that contamination is also migrating to the south and west from the Landfill.
- Discharge from NPDES Outfall S501 also violated the AGQS for barium (0.36 mg/L, AGQS 0.075), copper (0.03 mg/L, AGQS 0.02 mg/L), and dissolved nitrate (3.4 mg/L, AGQS 2.43 mg/L).

The current NPDES permit, issued by IEPA for the CCW Landfill in 2000, identifies Outfall No. 5 as “quarry (ash pond) discharge.” Despite the extensive documentation of contamination of groundwater by ash constituents, and the fact that the surface water discharge waters are mostly water that has been in contact with the ash slurried to the landfill, IEPA requires only testing for pH and total suspended solids. The latest IEPA Inspection Report indicates that Midwest Generation is in compliance with the permit (IEPA, 2009a). The limited data contained in this report indicates that from January 2008 to May 2009, pH exceeded the AGQS (6.14 to 8.56) in 7 of the 17 sampling events (maximum pH of 8.8). As noted above, apparently separate sampling related to the Groundwater NOV found exceedances of the AGQSS for barium, copper, and nitrate at the No. 5 Outfall.

Constituents Involved
Ammonia, arsenic, boron, chloride, fluoride, manganese, molybdenum, pH, sodium, sulfate, total dissolved solids, barium, copper, nitrate

Incident and Date Damage Occurred / Identified
Knowledge of contamination of groundwater at the CCW landfill dates back to at least 1994.

Regulatory Action
In response to documented groundwater contamination at the CCW Landfill identified in the 1994 application for Significant Permit Modification, the Illinois Pollution Control Board (IPCB) issued an adjusted standard (AS) for the Landfill in 1996. The conditions of the AS include:
- Maintenance of an inward hydraulic gradient at the Landfill to prevent leachate migration; and
- Any statistically significant increase above Applicable Groundwater Quality Standard (AGQS) that is attributable to the facility and which occurs at or beyond the zone of attenuation within 100 years after closure of the last unit accepting waste will constitute a violation.

The operating permit for the Landfill has gone through a complex series of modifications since 1994 related to groundwater at the site, with additions and removals of monitoring wells and parameters monitored. The latest Significant Modification of the Landfill operating permit was submitted in 2006 (KPRG, 2006) and approved in 2007 (IEPA, 2007). Key provisions of the current operating permit include:
- A zone of attenuation for contaminants in groundwater from the ground surface to the bottom of the uppermost aquifer within an area defined by a distance of 100 feet from the edge of Lincoln Quarry on the upgradient side with respect to groundwater flow and at the property boundary on the downgradient side with respect to groundwater flow.
- The groundwater monitoring program must be capable of determining background groundwater quality hydraulically upgradient of and unaffected by the units and to detect from all potential sources of discharge, any release to groundwater within the facility. IEPA (2007) classifies wells as follows: upgradient (G38S&D, G39S), wells within zone of attenuation (G30S&D, G20S, R16D, R08S&D, R32S, G44S&D, G46S&D, G47S&D, G48S&D) and compliance wells (G31S&D, G33S&D, G41S&D, G42S&D). As has been noted in the Test of Proof section, a consequence of reversal in groundwater flow direction on the south side of the quarry as a result of dewatering of the Laraway Quarry is that there are no monitoring wells in the current network that can be reliably considered upgradient.
AGQSS (applicable groundwater quality standards), which apply to upgradient and compliance boundary wells, and MAPCs (maximum allowable predicted concentrations), which apply to wells within the zone of attenuation, have been established for all parameters in the detection monitoring program. The permit sets the MAPCs equal to the AGQSS, so only AGQSSs are referred to in the discussion here. A
“G1” list of parameters that must be sampled quarterly includes: pH, specific conductance, ammonia, arsenic, boron, cadmium, chloride, fluoride, manganese, molybdenum, potassium, selenium, sodium, sulfate, TDS, TOC, and zinc (chemical constituents are tested for dissolved concentrations). A “G2” list of parameters that must be sampled annually includes: barium, copper, iron, lead, mercury, and nitrate (unfiltered total concentration). The request in the latest Significant Permit Modification (KPRG, 2006) to eliminate ten parameters from the G2 list (dissolved antimony, beryllium, chromium, cobalt, cyanide, iron, lead, mercury, nickel, and thallium) was approved by IEPA (IEPA, 2007).

A review of the AGQSs, as defined in the latest significant permit modification approval, indicates that the modified standards for boron, cadmium, manganese, molybdenum, and selenium for the Landfill are significantly higher than either Illinois Class I Groundwater Standards or other health-based water quality standards (IEPA, 2007):

- The boron AGQS (5.9 mg/L) is well above the Illinois Class I groundwater standard of 2.0 mg/L (IGQS, 2002);
- The cadmium AGQS of 0.264 mg/L is 52 times higher than the Illinois Class I groundwater standard and federal MCL of 0.005 mg/L;
- The AGQS for manganese (0.634 mg/L) is 4.2 times higher than the Illinois Class I groundwater standard of 0.15 mg/L;
- The selenium AGQS of 0.325 mg/L is 6.5 times higher than the Illinois Class I groundwater standard and federal MCL of 0.05 mg/L; and
- Illinois has no molybdenum standard but the AGQS at the Landfill (1.38 mg/L) is more than 34 times higher than the federal Lifetime Health Advisory (LTHA) value of 0.04 mg/L.

A consequence of the IPCB’s AS for groundwater, combined with the AGQSs that have been set, is that groundwater with significant concentrations of toxic metals can move off-site and be in compliance with the terms of the current Landfill operating permit.

Submittals by Midwest Generation to IEPA and other public documents reveal that the Landfill has not been in compliance with the AS or the Permit for some period of time and probably as early as 2004 (Driver, 2009). Despite evidence that groundwater contamination at the Landfill has repeatedly exceeded even the relaxed AGQSs that have been allowed by IEPA, no significant enforcement action was taken until a Notice of Violation dated August 31, 2009 was issued. The details of the NOV are summarized in the Test of Proof section.

The IEPA Ash Impoundment Assessment identifies the Lincoln Quarry Ash Landfill as having an IPCB Ground Water Management Zone (GMZ) designation (IEPA, 2009c). Such a designation has the potential for allowing off-site contamination of groundwater within the designated zone. However according to IEPA internal communications there is no GMZ at the site (IEPA, 2010). The only information available as part the voluminous material eventually received in response to FOIA requests for information about the Joilet 9 ash disposal site that would indicate that a GMZ is even being considered is a June 2009 map prepared by KPRG showing proposed locations of initial GMZ monitoring wells.

Wastes Present

Slurried bottom ash and slag

Types of Waste Management Unit

The Lincoln Quarry has been used as a disposal facility for bottom ash and slag from two coal-fired generating stations (Joliet 9 and 29) since around 1962. It operates under a landfill operating permit, but also includes two below-grade surface impoundments for the slurry water that is used to move the coal ash from the generating stations to the Landfill. Ash is sluiced into the Main Quarry, which occupies the southern area of the site and slurry waters collect in a large pond in the north part of the Main Quarry (P1). A North Quarry, designated as the zone
of attenuation, includes a settling pond and another pond in the southeast part of this area. Neither the ash landfill fill nor the ponds are lined.

Active or Inactive Waste Management Unit
Most of the unlined disposal area is active. An area in the southwest corner of the site is inactive.

Hydrogeologic Conditions
The area of the Lincoln Quarry CCW Landfill has four main hydrogeologic units: (1) the upper unconsolidated glacial materials; (2) the upper weathered Silurian dolomite; (3) the lower Silurian dolomite; and (4) the Brainard Shale/Ft. Atkinson dolomite. The underlying Skales formation is a regional aquitard. Consultants for Midwest Generation have developed a nine-layer three dimensional groundwater flow model for the site (KPRG, 2008b), details of which have been questioned by consultants for Brandon Road Properties (owners of the old quarry east of the ash landfill) (C&E, 2008).

The monitoring well network for the Landfill includes 11 shallow zone wells (G38S, G39S, G30S, G20S, R32S, G44S, G31S, G33S, G41S and P40S), nine deep zone wells (G38D, G30D, R16D, R08D, G44D, G31D, G41D and G42D), and one surface water discharge point (S501, main quarry leachate). As a result of groundwater flow shifts caused by quarrying activities to the southeast, three well clusters were added south of the Landfill (G46S&D, G47S&D, and G48S&D).

Natural groundwater flow beneath the quarry landfill has historically been from south and east to the north and west toward the Des Plaines River. Dewatering connected to expansion of mining activities at the Laraway Quarry about 1,000 feet to the southeast of the Lincoln Quarry has created a flow component to the south and southeast toward that quarry. A proposal by Brandon Road Properties (BRP), LLC to dewater an inactive quarry immediately east of the Lincoln Quarry Ash Landfill (referred to in documents variously as the BRP, Boyd, and former De Be Land Quarry) raised concerns that groundwater would also begin to flow east to the this quarry and northeast toward a residential area. This concern led IEPA to deny BRP’s application for an NPDES permit, a denial that BRP has contested (Driver, 2009). Even without dewatering of the BRP Quarry, there is evidence that contamination is moving to the northeast into the Smiley subdivision, probably as a result of residential well usage.

At Risk Population
There are 94 wells used for drinking water within a one-mile radius of the Landfill (IEPA, 2009c). An unincorporated area lies northeast of the Landfill, and a few private residences lie to the south. Private and public well data for the state of Illinois is maintained on a county by county basis via online database operated by the Illinois State Water Survey. Plotting the wells from this database on a map is nearly impossible for the reason that instead of each well being assigned an exact x and y location (Latitude and Longitude), the exact position of the well falls in a one- to five-mile area of a square that is arranged by section, township, and range. It is unknown how many wells are downgradient of the site.

Sources

C&E. 2008. Civil & Environmental Consultants, Inc. (C&E), Memorandum from John Hock and Brad Renwick, C&E, to Alan Keller, Permit Section, IEPA Division of Water Pollution Control, Re: Comments to KPRG Modeling Addendum (Sept. 30, 2008).

Driver. 2009. Letter from LaDonna Driver, Hodge, Dwyer and Driver, to Sanjay Sofat, Acting Division Manager, IEPA Division of Water Pollution Control, Re: Brandon Road Properties and Lincoln Quarry Ash Landfill (Dec. 3, 2009).

IEPA. 2010. Email from Amy Zimmer, Environmental Protection Geologist, Groundwater Section, IEPA, to Bill Buscher, Bureau of Water, IEPA, Re: Attorney Letter Regarding Midwest Site (Jan, 12, 2010) [Note: this email is apparently addressing questions raised by Driver (2009)].

IEPA. 2009b. Memorandum from Ricardo Ng, Des Plaines Office, IEPA, to Region File, Re: Inspection Report on Midwest Generation Joliet Station 9 (Unit 6) NPDES No. IL0002216 (July 9, 2009).

Midwest Generation. 2009. Letter from Maria Race, Environmental Program Manager, Midwest Generation, to Bill Buscher, Bureau of Water, IEPA, Re: Residential Well Sampling in Vicinity of Lincoln Quarry Landfill (Sept. 9, 2009).

Thompson, Tammy. 2010. Email communication (Aug. 6, 2010) (former resident in the area of the Landfill).
Entity/Company – Location
Southern Illinois Power Cooperative - Marion Plant
11543 Lake of Egypt Road
Marion, IL 62959
Williamson County
Latitude: 37.620103 Longitude: 88.953467

Determination
Demonstrated damage to groundwater moving off-site to surface water (discharging into Saline Creek on the northern edge of the site)

Probable Cause
Leaching of CCW contaminants from unlined CCW landfill and ponds

Summary
At the Southern Illinois Power Cooperative’s (SIPC) Marion Power Plant, coal fly ash, bottom ash, and flue gas desulfurization (FGD) sludge have been placed in six unlined ponds, one unlined landfill and one lined pond since 1963. Groundwater monitoring has been required in the vicinity of the landfill and ponds since 1994, and high concentrations of the toxic heavy metal cadmium were first detected in 1997. The 2004 to 2009 average concentrations of cadmium exceeded the Illinois Class I Groundwater Standards in six of eight monitoring wells with maximum concentrations reaching 10 to 18 times the federal Maximum Contaminant Level (MCL). The two wells with the highest average concentrations of cadmium (3 to 4 times the MCL) are adjacent to Saline Creek and discharging into the creek. At 0.088 mg/L, the maximum concentration in these wells is 35 to 352 times higher than federal acute and chronic water quality standards, respectively. These two wells also have high concentrations of iron that have exceeded the Class I Groundwater Standards since monitoring began in 1994. Recent data on pond discharges to Saline Creek show high concentrations of aluminum, boron, and manganese.
Test of Proof

Groundwater sampling since 1994 at the Marion Plant has tested only a limited suite of parameters that includes boron, cadmium, iron, and sulfate. All quarterly sampling data for cadmium collected from 2004 to 2009 were analyzed (the fourth quarter of 2004 was omitted because detection limits were above the MCL of 0.005 mg/L).

- **Cadmium.** The Illinois standard for cadmium in Class I Groundwater is 0.005 mg/L. The 5-year average concentration for cadmium equaled or exceeded this standard in six of the eight wells for which data are available since 2004. The highest average concentrations are in S1 (0.015 mg/L, 3 times the MCL, maximum of 0.088 mg/L, 17.6 times the MCL) and S2 (0.02 mg/L, 3.9 times the MCL, maximum of 0.052 mg/L, more than 10 times the MCL). Both of these wells are between the CCW ponds and landfill and Saline Creek, so the highest concentrations of cadmium at the site are discharging to Saline Creek. The next highest concentrations are in C1 (location not known) with an average concentration of 0.01 mg/L, twice the MCL. Other wells where average concentrations were equal to or in excess of the MCL for cadmium include S3 (0.006 mg/L), S5 (0.007 mg/L), and S6 (0.0054 mg/L). The two remaining wells for which data are available for the last five years have elevated levels of cadmium, but their averages are below the MCL: C3 (0.004 mg/L) and S4 (0.003 mg/L).

- **Boron.** The Illinois standard for boron in Class I Groundwater is 2.0 mg/L. Groundwater sampling data from 1994 to 2009 shows occasional exceedances of boron in more than one well, dating back to 1994, but no consistent pattern of exceedances. Recent samples of ash pond effluent discharged to Saline Creek contained high boron (7.9 mg/L).

- **Iron.** The Illinois Class I groundwater standard for iron in is 5 mg/L. Recent sampling has shown exceptionally high concentrations of iron (more than 400 mg/L in S1 and more than 100 mg/L in S2), but this has been attributed to rusting well covers (SIPC, 2010). However, sample data going back to 1994 shows that most wells exceeded the MCL in most sampling events and S1, S2, and S3 commonly had concentrations exceeding 30 mg/L. The extremely high recent values may be due to rusting well covers, but it is also clear that the CCW disposal areas are contributing high concentrations of iron to the groundwater.

- **Sulfate.** Well data from 1994 to 2009 show sulfate concentrations that occasionally exceeded the USEPA secondary drinking water MCL of 250 mg/L, but not the Illinois Class I groundwater standard of 400 mg/L.

A sample of effluent collected in March 2009 from Ash Pond #4 (NPDES Outfall #002), which discharges to Saline Creek, showed high concentrations of aluminum (0.33 mg/L, 3.8 times the EPA water quality criteria of 0.087 mg/L for chronic exposure to aquatic life, although Illinois has not set WQC for aluminum), boron (7.9 mg/L, more than ten times USEPA’s surface water criteria of 0.75 mg/L for protection of sensitive crops by long-term irrigation). IEPA’s response to a FOIA request did not include effluent quality data other than that for 2009. There does not appear to be any sampling to determine actual impacts of the discharges on Saline Creek.

Constituents Involved
Boron, cadmium, iron, aluminum, and manganese

At Risk Population
There are three wells within a one-mile radius of the CCW disposal areas (IEPA, 2009b). Exact locations were not acquired because well locations are given in section, township, and range with a one- to five-mile variance. Illinois private and public well data are maintained on a county by county basis via an online database operated by the Illinois State Water Survey. It is unknown how many wells are downgradient of the site.

Incident and Date Damage Occurred / Identified
The first groundwater sampling in 1994 found high concentrations of iron in several wells (up to 24.5 mg/L). Boron was found above the IL MCL in several wells (maximum of 2.53 mg/L) in 1995. Cadmium was first measured above the MCL in two wells in November 1997 (0.012 to 0.013 mg/L).
Regulatory Action
SIPC began reporting groundwater monitoring data to the IEPA in 1994, and by 1997 the data showed significant cadmium contamination. However, IEPA's Hydrogeology and Compliance Unit did not review this data until 2009. IEPA found elevated boron, cadmium, and iron above Illinois Class I Groundwater Standards and asked SIPC to submit a "hydrogeologic assessment plan" to determine the source and extent of elevated iron and cadmium contamination at the site (IEPA, 2009a). IEPA approved a plan that includes measures to refurbish seven existing wells and replace two groundwater monitoring wells that have been out of service, but the plan does not require groundwater monitoring for parameters other than boron, cadmium, iron, and sulfates (IEPA, 2010).

Wastes Present
Bottom ash, fly ash, and scrubber sludge

Type(s) of Waste Management Unit
Seven ash ponds that receive fly ash and/or bottom ash from Units 1, 2 and 3 are located throughout the facility. Only one of these is lined.

Dry fly ash and scrubber sludge are mixed and placed in an unlined solid waste landfill with a capacity of 1,137,359 cubic yards that is located between the confluence of Saline Creek and the South Fork of Saline Creek (SIPC, 1993 and IEPA, 2009b).

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
Detailed hydrogeologic investigations were recently initiated at the site (SIPC, 2010). Review of the Marion and Goreville USGS topographic maps shows that the spillway elevation of the dam for Lake of Egypt located just east of the Marion plant is 500 feet and that most of the ash ponds are located in upland positions a little above or below this elevation. The CCW landfill is located at an elevation of about 460 feet in the floodplain between the confluence of Saline Creek and South Fork Saline Creek. The main direction of groundwater flow from the various CCW ponds and landfill, assuming topographic control of flow, is to the north toward Saline Creek, which is a discharge point for shallow groundwater.

Sources

Entity/Company – Location
Union Electric Company/Ameren Energy d/b/a AmerenUE - Venice Power Station Ash Ponds
701 Main St
Venice, IL 62090
St. Clair and Madison Counties
Latitude: 38.653694 Longitude: -90.172728

Determination
Demonstrated damage to groundwater off-site (400 feet east of ash ponds & beyond property line)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from unlined CCW ponds

Summary
Inactive and unlined coal ash ponds at the AmerenUE Venice power plant on the east side of the Mississippi River created a contaminant plume of boron that exceeds Illinois Class I (potable) groundwater standards, extending 475 feet south of the ponds. A contaminant plume of arsenic that exceeds Class I standards extends beyond the boron plume and contains concentrations as high as 38 times the federal MCL, 400 feet beyond the ash ponds. The ash ponds stopped receiving CCW in 1977 when the plant switched from burning coal to oil. The contaminant plumes were discovered in the late 1990s when groundwater monitoring was required as part of a permit to resume operation of the Venice Plant in 1995. AmerenUE has proposed a state “Groundwater Management Zone” (outlined in red on the map below) to contain contaminant plumes within the property.
Test of Proof

A review of groundwater monitoring data submitted by AmerenUE to the Illinois Environmental Protection Agency (IEPA) from 1996 to 2009 found the following:

- **Arsenic.** The Illinois Class I groundwater standard for arsenic is 0.05 mg/L, five times higher than the federal Maximum Contaminant Level (MCL) of 0.01 mg/L. The average concentration of arsenic exceeded the Illinois standard in MW5 (0.054 mg/L) and MW6 (0.077 mg/L) on the north and south edges of the ash ponds, respectively. MW7, set 200 feet south of the edge of the ash ponds, had even higher average arsenic concentrations (0.086 mg/L, 8.6 times the MCL, with a maximum of 0.215 mg/L, 21 times the MCL). Other monitoring wells where average concentrations exceeded the MCL included MW1 on the north edge of the ash pond (0.026 mg/L) and MW4 on the east edge (0.024 mg/L). Arsenic concentrations in monitoring wells west of the ash ponds and east of the river were lower, suggesting that the dominant flow of groundwater is to the east away from the river (MW2 exceeded the MCL in 3 out of 30 samples, with a maximum of 0.24 mg/L, and MW3 exceeded the MCL in 2 out of 24 samples, with a maximum of 0.26 mg/L). A dominant flow to the east away from river is also suggested by common, and in some cases substantive, exceedances of the arsenic MCL in MW8 (7 out of 39 samples, maximum of 0.31 mg/L) and MW9 (11 out of 39 samples, maximum of 0.38 mg/L, 38 times the MCL). Both MW8 and MW9 are off-site about 400 feet east of the CCW ponds, and, as discussed below, concentrations of contaminants are affected by seasonal changes in flow direction.

- **Boron.** The standard for boron in Illinois for Class I (potable) water is 2.0 mg/L. The average concentration of boron exceeded the state standard in all monitoring wells set at the northern (MW1, 22.5 mg/L, more than 10 times the MCL), eastern (MW4, 19.2 mg/L and MW5 5.2 mg/L) and southern (MW6, 3.8 mg/L) edges of the ash ponds. MW7, set 200 feet south of the edge of the ash ponds, had a somewhat lower average boron concentration (2.6 mg/L). MW2, west of the ash ponds, also had a high boron concentration (5.4 mg/L). Wells MW3 (west) and off-site MW8/MW9 (east) had one or zero exceedances of the state standard since monitoring began, although these wells show concentrations of boron above what would be expected natural background levels. As discussed later, elevated boron both east and west of the ash pond system can be explained by seasonal variations in groundwater flow direction.

- **Cadmium.** The MCL for cadmium (0.005 mg/L) was exceeded three times in early sampling of MW1, but has not been exceeded since April 1999. There were no other MCL exceedances for cadmium in other wells.

- **Iron.** The Illinois Class I groundwater standard for iron in is 5.0 mg/L. Iron concentrations have exceeded this standard at MW6 (maximum of 27.5 mg/L), MW7 (maximum of 17.8 mg/L) and MW9 (maximum of 23.3 mg/L).

- **Manganese.** The Illinois Class I groundwater standard for manganese is 0.015 mg/L. Manganese concentrations have exceeded this standard in all wells. Wells with exceptionally high manganese concentration (more than 1.5 mg/L, 100 times the standard) include: MW1 (maximum of 4.82 mg/L), MW4 (maximum of 4.25 mg/L), MW6 (maximum of 3.56 mg/L), and MW7 (maximum of 5.59 mg/L).

- **Total Dissolved Solids (TDS).** The Illinois Class I groundwater standard for TDS is 1,200 mg/L, more than twice as high as the Secondary MCL (SMCL) of 500 mg/L. The Illinois standard for TDS was consistently exceeded in MW1 (maximum of 2,656 mg/L), and regularly exceeded in MW4 (maximum of 2090 mg/L). These exceedances are more than five and four times the federal SMCL, respectively.

The Supplemental Hydrogeological Assessment of the site performed by a consultant for AmerenUE states that there is little correlation between arsenic and boron concentrations in groundwater samples collected at the site, and uses this evidence, along with the fact that arsenic concentrations in field leachate samples collected at the ash ponds are a factor of 4 to 5 lower than observed in groundwater, to argue that the main source of the arsenic is not from the coal ash ponds (NRT, 2010). The Supplemental Hydrogeological Assessment for the site also identifies MW8 and MW9 east of the ash ponds as “upgradient” wells, apparently on the assumption that the dominant direction of groundwater flow is west toward the river (NRT, 2010).
However, several lines of evidence suggest that the ash ponds are the main source of arsenic, and that off-site MW8 and MW9 are not truly upgradient and are affected by contaminants from the ash ponds:

- Boron tends not to interact with aquifer solids and serves as a good indicator of the zone of influence of ash leachate on groundwater. Arsenic, on the other hand, is sensitive to redox conditions in the ash pore waters and aquifer, so a correlation between arsenic and boron in the same sample would not necessarily be expected.

- In Pleistocene aquifers, groundwater containing boron concentrations greater than 0.5 mg/L can be considered affected by leachate (Schleyer et al., 1992). In MW8, the average concentration of boron in samples taken from 1999 to 2009 was 0.68 mg/L and more recent sampling in MW8P averaged 1.48 mg/L, suggesting that this well, 400 feet “upgradient,” has been affected by the ash ponds.

- This influence can be explained by the fact that when the Mississippi River is high, the groundwater gradient to the east is much steeper (river 8.34 feet higher than MW8 on July 26, 2008) than when the river is at normal flow (river 3.93 feet lower than MW8 on September 26, 2008), making it entirely possible for contaminants to reach these wells and farther east before the lower westward gradient is reestablished.

- The interpretation that the dominant direction of the flow of contaminants is to the east rather than the west is confirmed by the fact that the monitoring wells set between the ash ponds and the river (MW2 and MW3) have lower average concentrations of arsenic and boron than the wells east of the ash ponds (MW4 and MW5).

Although the consultant raises the possibility that there may be some contribution of arsenic from another source, none has been identified.

The boron contaminant plume with concentrations up to 2.0 mg/L extends a maximum of 475 feet south of the ponds. A contaminant plume of arsenic that exceeds Illinois Class I standards extends a bit beyond the boron plume. The “Groundwater Management Zone” (GMZ) proposed by AmerenUE extends somewhat beyond the boundaries of the contaminant plume and is located within the property boundaries of the power plant.

Constituents Involved
Arsenic, boron, cadmium, iron, manganese, total dissolved solids

At Risk Population
A potable well survey conducted within a 2,500-foot radius of the ash pond system boundaries has been performed (NRT 2009a). The map showing the locations of these wells was withheld by IEPA when it responded to the Freedom of Information Act (FOIA) request for information about the site, so the results of this survey cannot be reported here. AmerenUE (2010) notes that the City of Venice and Village of Brooklyn have enacted ordinances prohibiting the use of groundwater as a potable water supply, because the presence of industrial facilities in the area since the early 1900s has created multiple potential sources for groundwater contamination. However, the analysis presented here suggests that most, if not all, contaminants are being detected in monitoring wells associated with the ash pond system and come from the unlined ash ponds. Private and public well data for the state of Illinois is maintained on a county by county basis via an online database operated by the Illinois State Water Survey. Wells locations fall in a one- to five-mile area arranged by section, township, and range. It is not possible to plot well locations or distinguish which wells are downgradient of the site.

Incident and Date Damage Occurred / Identified
Arsenic and boron exceeded MCLs and SMCLs in the first round of groundwater sampling on July 27, 1996. When MW4, MW5, and MW6 were added to the network in December 1997, arsenic and boron also exceeded Illinois Class I groundwater standards in all three wells.

Regulatory Action
When the Venice Plant resumed operations in 1995, a condition for the operating permit was that hydrogeologic investigations be initiated to evaluate the impact of the ash pond system on groundwater. These investigations
were initiated in 1996 with the installation of three monitoring wells, and the monitoring well network was eventually expanded to include 17 monitoring wells at varying depths and locations in and around the ash pond system. As discussed above, contaminant plumes containing arsenic and boron at levels that exceed ILEPA Class I groundwater standards and federal MCLs have been defined within the boundaries of the Venice Plant facility.

In March 2010, as part of the plan for final closure of the ash ponds, AmerenUE proposed final capping and establishment within their property boundaries of a Groundwater Management Zone (GMZ) for containing the contaminant plumes.

Wastes Present
Coal ash and other CCW from boilers, wastewaters from the boilers and water treatment plant, and various other process waters plus storm water runoff

Type(s) of Waste Management Unit(s)
A series of unlined ponds, referred to as Ash Pond Nos. 2 and 3 and collectively as the “ash pond system,” was constructed in the 1950s to receive wet-sluiced coal ash and other CCW from boilers, wastewaters from the boilers, water treatment plant, and various other process waters plus storm water runoff. When the plant stopped burning coal in 1977, the ash pond system contained about 1,425,500 cubic yards of waste. The ash pond system continued to receive process wastewater and storm water runoff until a new water treatment facility and outfall was constructed in 2005. The ash pond system has been out of service since 2005 (AmerenUE, 2010).

Active or Inactive Waste Management Unit
Inactive

Hydrogeologic Conditions
The ash pond system is underlain by about 80 feet of alluvial deposits associated with the Mississippi River. The upper 20 to 30 feet of alluvium contain alternating layers of silt, sand, and clay. The lower 60 to 50 feet consist primarily of sand and gravel. Groundwater flow in the region is controlled by the Mississippi River. During normal river stage, which lasts the majority of the year, groundwater flows west and discharges into the river. During high river stage, groundwater flow is reversed, flowing east, with the river recharging the aquifer. There is also a perched water table that is influenced by infiltration of precipitation that tends to dilute the concentrations of contaminants from the ash pond system in the shallower wells. As discussed above in the Test of Proof section, even though the seasonal eastward flow inland from the Mississippi River is of shorter duration than the westward flow toward the river, the higher gradient of the eastward flow has carried contaminants farther inland (400 feet to MW8 and MW9) than has been acknowledged by AmerenUE’s consultants (Hanson Engineering, 2000).

Additional Narrative
The 500-MW Venice plant burned coal until it was converted to an oil-burning facility in the late 1970s. The plant’s capacity dropped off in the 1980s, but it was reconditioned and reopened in 1995. AmerenUE was formed in 1998 with the merger of Union Electric and Illinois Public Service. A catastrophic fire in 2003 resulted in abandonment of the original power plant building and associated generating equipment. Beginning in 2004, three additional single-cycle combustion turbine generators (Units 3, 4, and 5) were installed north of the ash pond system, and the plant was reopened in 2005. The plant now operates only intermittently as a peaking facility.

Sources

Entity/Company - Location
E.ON U.S. d/b/a Louisville Gas & Electric (LG&E) - Mill Creek Plant
14660 Dixie Highway
Louisville, KY 40272
Jefferson County
Latitude: 38.049444 Longitude: -85.9075

Determination
Demonstrated damage to groundwater moving off-site (Ohio River)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants to groundwater from three CCW landfill areas (A, B, and C) and the coal ash pond

Summary
Groundwater has been contaminated with arsenic at 1.5 times the federal Maximum Contaminant Level (MCL) in three wells downgradient from a CCW landfill and pond adjacent to the Ohio River at the Mill Creek Plant, approximately 15 miles south of downtown Louisville. Concentrations of total dissolved solids (TDS) have been up to 1,280 mg/L, more than 2.5 times the federal Secondary MCL (SMCL), and sulfate has been up to 717 mg/L, nearly 3 times the SMCL. Nine wells have groundwater parameter concentrations that have exceeded one or more drinking water standards. Although groundwater flows to the Ohio River, the horizontal extent of the contamination is approximately one-mile wide potentially affecting off-site human use of shallow groundwater in this urban area. Nevertheless, the Kentucky Division of Waste Management waived groundwater monitoring for CCW metals, has not required any assessment or corrective action, and has not conducted or required any off-site groundwater monitoring.
Test of Proof
The Mill Creek Plant became operational in 1972, and the Kentucky Division of Waste Management (KDWM) originally permitted the 185-acre CCW landfill in 1982, and horizontal expansions of the landfill occurred in 1990 and in 2009. The first two phases of the CCW landfill (Sites A and B) were permitted as an “inert” landfill, and the KDWM did not require a liner. The most recent expansion in 2009 was constructed with a clay liner that was designed to allow CCW leachate seepage but attenuate metals and other CCW contaminants (LG&E, 2005). CCW disposed of in the landfill includes fly ash, bottom ash, and FGD gypsum.

A “significant hazard” 79-acre coal ash pond was built in 1972, and four other process water ponds were commissioned in the late 1970s and early 1980s. The Mill Creek Power Plant disposed of bottom ash, fly ash, boiler slag, flue gas desulfurization (FGD) sludge, coal fines, process water drainage, and pyrites in the ash pond. Neither the KDWM nor the Kentucky Division of Water (KDOW) requires groundwater monitoring of the ash pond; however, plant production wells (PW-1, PW-2, and PW-3) south of the pond can be used as indicators of CCW constituent migration from the ash pond.

The KDWM requires groundwater monitoring of the CCW landfill and that monitoring shows that the groundwater contamination correlates chronologically with horizontal expansions of the landfill, and that concentrations of parameters have increased over time. The oldest groundwater data in the KDWM landfill file that includes any heavy metal concentrations in groundwater monitoring results date back to an August 1994 (LG&E, 1994) sampling event. Its results showed the following:

- **Arsenic** – exceeded the EPA MCL (0.01 mg/L) in three wells just south of the ash pond and between the oldest part of the ash landfill (Site B) and the Ohio River: MW-02 (0.014 mg/L); PW-1 (0.014 mg/L); and PW-3 (0.013 mg/L).
- **Sulfate** – the highest concentrations were in one well (PW-1) near the ash pond and the Site B landfill and in one well near the Site A ash landfill (MW-6). MW-6 is located adjacent to the Ohio River.
- **Calcium** – often a highly soluble parameter in CCW, the highest concentrations for calcium were in the two wells with the highest sulfate (PW-1 and MW-6), providing further evidence of contamination from ash or other CCW.

Groundwater monitoring results for a November 1995 sampling event also showed arsenic concentrations exceeding the MCL downgradient from the ash disposal areas. The MCL for arsenic was exceeded again in MW-2 (0.015 mg/L) and PW-1 (0.014 mg/L).

In June 1996, groundwater monitoring omitted arsenic and only included the following parameters: temperature, chloride, conductivity, chemical oxygen demand (COD), total organic carbon (TOC), sulfate, TDS, calcium, sodium, and copper (LG&E, 1996). The June 1996 results still indicated that the areas downgradient from the CCW landfill (Sites A and B) and nearest the coal ash pond had the highest concentrations of contaminants:

- **TDS** – concentrations exceeded the EPA SMCL (500 mg/L) at: MW-6 (959 mg/L, Site A landfill area); PW-1 (591 mg/L, Site B landfill and ash pond area); PW-2 (689 mg/L, Site B landfill and ash pond area); and PW-3 (910 mg/L, Site B landfill and ash pond area).
- **Sulfate** – concentrations exceeded the SMCL (250 mg/L) in MW-6 (383 mg/L) and PW-3 (439 mg/L).
- **Calcium and sodium** – the highest concentrations were associated with MW-6, PW-1, PW-2, and PW-3 that also had the highest sulfate, and TDS – like calcium, sodium is often a highly soluble parameter in CCW.
• Copper – concentrations were relatively unchanged between all wells, indicating that copper is not a good indicator for coal combustion wastes at this site.

A 1997 statistical analysis of groundwater compared the results of all monitoring wells to a designated background (also called “upgradient”) well, MW-1 (LG&E, 1997). MW-1 is to the west the Site B landfill, which is the oldest landfill at the site and is the most northwestern monitoring well at the site, likely placing it at the most upgradient position for shallow groundwater movement. The results indicated statistically significant increases (SSIs) in downgradient wells that are indicative of a release of CCW parameters to the groundwater as follows:

• TDS – statistical increases in MW-2, MW-3, MW-4, PW-1, and PW-3. MW-2, MW-4, and PW-1 are located between the Site B landfill and the Ohio River.
• Sulfate – statistical increases in MW-2, MW-4, MW-6, PW-1, and PW-3. MW-6 is located between the Site A landfill and the Ohio River.
• Calcium – statistical increases in MW-6 and PW-1.
• Sodium – statistical increases in MW-2, MW-3, MW-4, MW-5, MW-6, PW-1, and PW-3.

While MW-5 (east of Site A) and MW-3 (east of Site B) are located on the “upgradient” side of CCW disposal areas, they are located close to the CCW disposal areas and south of MW-1, and the significant increases in TDS at MW-3 and sodium at MW-3 and MW-5 may reflect the outward spread of contamination.

By 2006, LG&E had redefined what it considered to be a statistically significant increase in constituent concentrations. The file review did not indicate if the KDWM concurred with this re-definition. LG&E also concluded that the list of monitoring parameters being tested for each well was not reflective of CCW. A summary of the key LG&E conclusions for the November 2005 sampling event is as follows (LG&E, 2006):

• Production wells PW-1, PW-2, and PW-3 would no longer be sampled, even though they had exceedances above groundwater standards in the past.
• LG&E would continue voluntarily monitoring for calcium, sodium, and sulfate because they believed these parameters are more indicative of CCW than those required by the KDWM.
• The average concentrations of three wells (MW-1, MW-3, and MW-5) would now be used as “background” instead of just MW-1 – even though LG&E concluded in 1997 that MW-3 and MW-5 had already been affected by CCW contamination from the landfills, as indicated by statistically significant increases in sodium and TDS.
• A statistically significant determination should not be based on sampling results because the results might be “indicative of a flaw within either the sample collection or analytical processes.”
• The results of assessment monitoring “indicated minimal effects on human health and the environment” and that only “effects on human health and the environment” should be the basis for requiring an assessment of contamination, not the results of statistical analyses.

LG&E would no longer notify the KDWM within 48 hours of determining that a statistical increase (or MCL exceedance) occurred, as required in the permit. Instead, notices would be made in semi-annual sampling reports that are submitted to the KDWM.

The current CCW landfill permit requires that groundwater be monitored semi-annually (KDEP, 2009). The permit requires that “groundwater assessment activities” be performed when an MCL is exceeded or if statistical analyses indicate a statistically significant increase over background occurs. However, none of the monitored parameters has an MCL; therefore, the first condition would never apply.

By 2009, groundwater monitoring data indicated that the horizontal extent of contamination had increased and that concentrations of parameters previously reported had also increased in certain wells. Sampling
included a new well (MW-11 also called IW-11) that was installed downgradient from the newest landfill horizontal expansion area (Site C) where disposal began in 2009. Data from a May 2009 sampling event indicated the following:

- **Chloride** – the concentration of 211 mg/L in MW-6 downgradient from the Site A landfill was substantially higher than concentrations in all other wells which ranged from 9.4 to 55.1 mg/L.
- **TDS** – concentrations exceeded the EPA SMCL (500 mg/L) in wells monitoring all three of the landfill Sites. The concentration for the Site A landfill well adjacent to the Ohio River, MW-6, was 1,280 mg/L (compared to 959 mg/L in June 1996 at MW-6). The concentrations for the three Site B landfill wells were 508 mg/L at MW-1, 596 mg/L at MW-2, and 1,234 mg/L at MW-4. The concentration in newly installed MW-11 monitoring Site C was 585 mg/L.
- **Sulfate** – concentrations exceeded the EPA SMCL (250 mg/L) at Site A landfill well MW-6, at 499.5 mg/L (compared to 383 mg/L in MW-6 in June 1996) and at Site B landfill well, MW-4 at 716.6 mg/L.
- **Calcium and sodium** – the highest concentrations were generally associated with the wells with the highest sulfate and TDS.

When the results of 2009 data are compared to the 1996 results, the data and associated file material indicate that:

- The horizontal extent of groundwater contamination above regulatory standards has progressed according to the approval of horizontal landfill expansions – from Site B, to Site A, and now Site C. The high levels of coal-ash-related constituents in MW-6, downgradient from the Site C landfill indicate that the liner is leaking and not preventing contaminant escape to underlying groundwater. The liner was designed as a leachate “seepage treatment system” (LG&E, 2005) and assumes that toxic metals will be removed by attaching to soil particles. However, monitoring for metals is not required, so the KDWM does not know if the liner is preventing metals migration from the disposal unit.
- The absence of heavy metal testing in the current permit fails to recognize the occurrence of arsenic MCL exceedances in the past. As a result, that documented threat is not defined from any of the disposal units despite the clearly documented spread of contamination across the site.
- Wells downgradient of the CCW landfill areas continue to indicate a release of CCW contaminants to the groundwater, as indicated by elevated levels of chloride, sulfate, pH, calcium, sodium, and TDS and exceedances of SMCLs for sulfate, chloride, and TDS.
- The parameters selected by LG&E as being good indicators of a release of CCW (calcium, sulfate, and sodium) are in fact, good indicators of a release; yet, KDWM has not required an assessment of on-site contamination since 1996 or any off-site assessment to determine the nature and extent of those contamination by those parameters or any heavy metals associated with the CCW.
- Long-term contamination at MW-6 within 175 feet of the Ohio River suggests that contaminants are reaching the river.
- Without sampling for trace elements and metals typically found in CCW such as arsenic, antimony, cadmium, selenium, thallium, or mercury that are harmful to humans and/or fish and aquatic life at extremely low levels, the potential impact of this contamination to the Ohio River and its water quality and ecosystem is unknown.
- Plant production wells (PW-1 through PW-3) are no longer sampled even though they repeatedly provided an indication of CCW contaminant release to groundwater.
- Groundwater monitoring results of four wells (IW-7 through IW-10) that are located between the Ohio River and the Gypsum Processing Plant and the Site A landfill are apparently not reported to the KDWM.
Constituents Involved
Arsenic, chloride, sodium, sulfate, and total dissolved solids

At Risk Population
Private and public drinking well data was obtained for Mill Creek Plant from Kentucky’s Well Log GIS layer. In addition, well data was obtained from Indiana’s Department of Natural Resources Private and Public Well GIS layer to provide comprehensive well location results for both states. There are 15 private wells within a two mile radius and 4 public wells within a five mile radius of the Mill Creek Plant. Given the evidence that the production wells at Mill Creek Plant are capturing contaminants from the ash pond and CCW landfill, the two public supply wells about 2,000 to 3,000 feet east of these disposal areas may be close enough that they are also capturing contaminants, depending on how much water is being pumped from them. Two other public and four private drinking water wells are clearly downstream of the site. It is possible that data may be inconclusive or missing in both GIS layers presented.

Incident and Date Damage Occurred / Identified
Parameter concentrations greater than MCLs and SMCLs have occurred since 1994.

Regulatory Actions
KDWM required Mill Creek Plant to conduct groundwater assessment monitoring in October 1996 due to elevated indicator parameters (LG&E, 2005). A groundwater assessment report was submitted on
September 10, 1997. By November 12, 1997, the Mill Creek Plant had returned to normal detection monitoring (LG&E, 2005). There was no indication in the file that the KDWM has ever required any off-site sampling, any off-site drinking water well investigations, or on-site corrective actions.

Wastes Present
Fly ash and bottom ash are disposed in the landfill. FGD scrubber sludge was disposed of in the landfill from 1982 to 1999 (FMSM, Nov. 2003). Fly ash, bottom ash, boiler slag, coal pile runoff, FGD gypsum, and pyrites have been disposed of in the ash pond (EPA, 2009; O’Brien & Geri, 2009).

Type(s) of Waste Management Units
The Mill Creek Plant includes a 185-acre CCW landfill, a 79-acre ash pond, and four flue gas desulfurization (FGD) processing ponds. According to the KDWM, CCW in landfill Sites A, B, and C will eventually cover the entire property except where the plant structures and ash pond exist (Brandenburg, Apr. 2010). Site B was the original landfill that was constructed in 1980 and was operated until 1990 (Puckett, 2010). Disposal in Site A, situated along the Ohio River, began in 1990 and is still active.

The KDWM permitted Sites A and B as an “inert” landfill and did not require liners under them (Brandenburg, July 2010). File photographs indicate that no daily or interim cover is placed on ash in Site A. LG&E applied for a permit modification in March 2003 to vertically expand the Site A landfill (FMSM, Dec. 2003), and KDWM approved that application on January 14, 2004 (KDEP, 2009). LG&E later applied for a horizontal expansion (Site C) of the landfill, and KDWM approved that expansion on September 13, 2006 (KDEP, 2006). Site C will connect disposal Sites A and B. The Site C landfill was not constructed until 2009 (Puckett, 2010). Gypsum was placed over the Site C clay liner and drainage blanket during the construction to prevent erosion; however, as of July 2010, Site A remained the main disposal area.

The 79-acre ash pond was built in 1972. The KDWM does not regulate the ash pond, and the KDWM file review did not determine if the ash pond is lined. No groundwater monitoring system exists at the pond. The pond’s west embankment (closest to the Ohio River) is approximately 77 feet higher than the normal pool of the river, and that embankment failed in 1978 during a spring flood; however, there was no release of CCW (O’Brien & Gere, 2009). The pond was rated a high hazard pond because of its proximity (less than 150 feet) to a residential development and a school, and failure of the pond embankment can potentially result in loss of human life, damage to wildlife and habitat, and threaten downstream drinking water supplies (O’Brien & Gere, 2009).

Four wastewater treatment and solids settling ponds have also existed on-site since the late 1970s and early 1980s, and they receive wastes associated with the FGD system, a gypsum processing unit, cooling tower blowdown, and storm water runoff (O’Brien & Gere, 2009). Solids are periodically removed from at least one of the ponds that takes gypsum waste water and disposed in the on-site landfills. The KDWM does not regulate these ponds and as a result, no monitoring data or information on whether they are lined was available from the file review.

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
The average depth to the static water level in wells on-site is approximately 43 feet below the top of each well (FMSM, 2005). The groundwater generally flows from east to west towards the Ohio River.
Sources
Brandenburg. July 1010. Email correspondence from Mike Brandenburg, P.G., Division of Waste Management (July 15, 2010).

Brandenburg. Apr. 2010. Email correspondence from Mike Brandenburg, P.G., Kentucky Division of Waste Management (Apr. 14, 2010).

KDEP. 2009. Kentucky Department for Environmental Protection, Division of Waste Management, Permit, Mill Creek Station, Solid Waste Permit # SW05600029 issued to Louisville Gas and Electric Company, (Aug. 19, 2009)

Puckett. 2010. Telephone conversation with Paul Puckett, E-On, Environmental Specialist (July 9, 2010).
Entity/Company - Location
Tennessee Valley Authority - Shawnee Fossil Plant
7900 Metropolis Lake Road
Paducah, KY 42086
McCracken County
Latitude: 37.156667 Longitude: -88.783611

Determination
Demonstrated damage to groundwater moving off-site (into Little Bayou Creek and Ohio River)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants to groundwater from unlined disposal units

Summary
Two unlined coal ash ponds and two unlined coal ash landfills at Shawnee Fossil Plant have been contaminating shallow groundwater feeding the Ohio River since at least the 1980s. Contaminants in the alluvial aquifer include selenium at concentrations almost twice the federal Maximum Contaminant Level (MCL), arsenic slightly exceeding the MCL, boron up to 2.5 times higher than the EPA Lifetime Health Advisory Level, total dissolved solids up to 4 times the Secondary MCL (SMCL), and sulfate up to 5.6 times the SMCL. Despite these exceedances, the Kentucky Division of Waste Management (KDWM) recently permitted Shawnee Fossil Plant to expand its CCW landfill without a liner. Contaminated groundwater wells are located within 500 feet of the Ohio River, and groundwater discharges to surface water via an on-site creek.
Test of Proof

Shawnee Fossil Plant monitored groundwater in only three wells from 2003 to September 2008. Since September 2008, groundwater monitoring was expanded to fourteen wells, and included more parameters (TVA, 2008b). Since September 2008, the sampling program has included boron, molybdenum, vanadium, sulfate, fluoride, copper, chloride, total dissolved solids (TDS), specific conductance, pH, chemical oxygen demand (COD), total organic carbon (TOC), and occasionally arsenic and selenium. According to the KDWM, higher than normal concentrations of TOC and chemical oxygen demand (COD) are commonly found in groundwater associated with CCW sites in Kentucky (Hendricks, 2010).

TVA is required to perform a statistical analysis of its groundwater data to determine if statistically significant increases (SSIs) of parameters occur compared to their concentrations in background wells. Groundwater monitoring of the original three wells from 2003 - 2008 found the following exceedances of SMCLs and SSIs:

<table>
<thead>
<tr>
<th>Parameter / Standard (mg/L)</th>
<th>Well Exceedances or SSIs (mg/L, except pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS (500)</td>
<td>D-30 (1,810, 3.6 times std.); SSI</td>
</tr>
<tr>
<td>pH (6.5 to 8.5)</td>
<td>D-11 (<6); D-27 (<6); and D-30 (<6)</td>
</tr>
<tr>
<td>TOC</td>
<td>D-11; SSI</td>
</tr>
<tr>
<td>COD</td>
<td>D-11; SSI</td>
</tr>
</tbody>
</table>

Groundwater monitoring Wells D-11, and D-30 are located between the disposal areas and the Ohio River and within approximately 500 feet of the Ohio River.

According to TVA groundwater monitoring reports from 2008, the Shawnee Fossil Plant has three upgradient wells and eleven downgradient wells. Of the three designated upgradient wells, D-19 is located the farthest upgradient from the disposal area. According to potentiometric surface diagrams from June 2000 and December 2004 (Hendricks, 2010), wells D-27 and D-77 are at times, downgradient from coal ash waste disposal areas. A summary of the wells on-site is as follows:

<table>
<thead>
<tr>
<th>Upgradient Wells</th>
<th>Downgradient Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-19</td>
<td>D-8A D-74A</td>
</tr>
<tr>
<td>D-27*</td>
<td>D-11 D-74B</td>
</tr>
<tr>
<td>D-77*</td>
<td>D-11B D-75A</td>
</tr>
<tr>
<td></td>
<td>D-30A D-75B</td>
</tr>
<tr>
<td></td>
<td>D-30B D-76A</td>
</tr>
<tr>
<td></td>
<td>D-33A</td>
</tr>
</tbody>
</table>

*As discussed in the text, D-27 and D-77 are incorrectly identified as upgradient.

TVA initiated background monitoring in August and September 2008 (TVA, October 2008a) for the new wells to determine “statistical background” concentrations for constituents of concern, even though there had been documented widespread contamination in the areas where the wells were installed since at least the 1980s. During that background monitoring, the following exceedances of MCLs, SMCLs, and health advisories were found (maximum concentrations in parentheses):
<table>
<thead>
<tr>
<th>Parameter / Standard (mg/L)</th>
<th>Well Exceedances (mg/L, except pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (6.5 to 8.5)</td>
<td>D-8A, D-11, D-11B (5.4 minimum), D-19, D-27, D-30A</td>
</tr>
<tr>
<td>Boron (6 mg/L – EPA Lifetime Health Advisory Level; 3 mg/L – EPA Child Health Advisory Level)</td>
<td>D-11B, D-30A, D-33A, D-74A (10 maximum), D-75A, D-75B, D-76A</td>
</tr>
<tr>
<td>Sulfate (250)</td>
<td>D-11B, D-74A, D-74B, D-75A (1,000 maximum), D-76A (1,400 maximum)</td>
</tr>
<tr>
<td>Arsenic (0.01)</td>
<td>D-77 (0.012)</td>
</tr>
<tr>
<td>Selenium (0.05)</td>
<td>D-74A (0.087), D-74B (0.083)</td>
</tr>
</tbody>
</table>

Wells with the highest concentrations were located the closest to CCW disposal areas. According to the KDWM, there is no well adjacent to CCW disposal areas that has not been affected by CCW because of a radial groundwater flow component from those areas (Hendricks, 2010). Unlike the wells closest to the CCW disposal areas, the background well D-19, located the farthest from the CCW disposal areas, did not exceed any standard other than pH.

Furthermore, a groundwater assessment performed in the 1980s determined that groundwater under the entire site was contaminated by CCW (Hendricks, 2010). Reddish leachate from CCW disposal areas has been seeping into Little Bayou Creek adjacent to the landfill and the ash ponds (Hendricks, 2010).

Constituents Involved
Arsenic, boron, pH, selenium, sulfate, and total dissolved solids

At Risk Populations
Data obtained from Kentucky’s Well Log GIS layer show a total of 24 private wells within a two-mile radius of TVA’s Shawnee Fossil Plant. Data from the State did not present any public drinking wells within a five-mile radius, however well records may be incomplete.
Mounding of groundwater in the disposal area causes localized flow in all directions.

Incident and Date Damage Occurred
1980s

Regulatory Action
A groundwater assessment was performed at the site in the 1980s (Hendricks, 2010). The exact date of that assessment was not determined because the assessment report was not provided during the file review for this report. KDWM recently permitted Shawnee Fossil Plant to expand its landfill without a liner

Wastes Present
Fly ash and bottom ash from the Shawnee Fossil Plant

Type(s) of Waste Management Unit
The Shawnee Fossil Plant has two contiguous CCW landfills designated as “special waste landfills” under the same permit (Hendricks, 2010) and two coal ash ponds. Neither CCW landfill is lined nor are the coal ash ponds (Hendricks, 2010). The CCW landfill closest to the coal ash ponds has a partial final cover. The southern and eastern boundaries of one CCW landfill are Little Bayou Creek and water lines to the Paducah Gaseous Diffusion Plant (Hendricks, 2010). The CCW landfills and coal ash ponds share a common groundwater monitoring system (Hendricks, 2010).

The two coal ash ponds have historically been very large, and filling has gradually created a smaller wet area on their surfaces. The ponds are located approximately 700 feet from the Ohio River. Like the CCW
landfills, information in KDWM files did not differentiate the type(s) of coal ash disposed in the ponds (fly vs. bottom ash).

TVA’s March 25, 2009 CERCLA 104(e) response to EPA’s request for information (TVA, 2009), indicates that Shawnee Fossil Plant has one (1) coal ash pond commissioned in 1952 for the disposal of fly ash and bottom ash that was expanded in 1971 and 1979; and one (1) “dry stack” commissioned in 1984 for fly ash and bottom ash disposal (TVA, 2009).

Active or Inactive Waste Management Unit

Both CCW landfills are active although one is nearing closure, while the other was approved for operation by KDWM in 2007. As of March 2006, the coal ash pond(s) had 287,000 cubic yards capacity remaining (TVA, 2009).

Hydrogeologic Conditions

The Shawnee Fossil Plant and its coal ash ponds and CCW landfills are located adjacent to the Ohio River. According the KDWM, the uppermost water-bearing zones are alluvial aquifers consisting of a perched water table and a lower aquifer that intersects the adjacent Little Bayou Creek (Hendricks, 2010). A radial groundwater flow from the waste disposal areas occurs and adjacent stream bank groundwater storage influences groundwater flow directions. The perched water table has a negative groundwater gradient (Hendricks, 2010), which means that the contaminated shallow groundwater migrates into the lower aquifer. Groundwater potentiometric surface diagrams from 2000 and 2004 such as the one below clearly illustrate mounded groundwater beneath the unlined special waste landfills and the radial groundwater flow components from that high point (Hendricks, 2010).
Additional Narrative

Metropolis Lake is located adjacent to the power plant. The lake is contaminated with mercury (unknown cause) (Hendricks, 2010). The lake is part of a park owned by the Kentucky State Nature Preserves Commission. The well nearest the lake, well D-77, is at times hydraulically downgradient from the plant and CCW disposal areas. Exceedances of MCLs and SMCLs have been measured at this well.

Sources

Hendricks. 2010. Email correspondence from Todd Hendricks, Geologist, Kentucky Division of Waste Management (Mar. 2–3 and July 14–15, 2010).

Entity/Company - Location
Eastern Kentucky Power Cooperative - Spurlock Station
Route 8
Maysville, KY 41056
Mason County
Latitude: 38.697222 Longitude: -83.810278

Determination
Demonstrated damage to off-site groundwater (750 feet beyond coal ash landfill boundary)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants into groundwater from the CCW landfill

Summary
Groundwater monitoring data indicate that the CCW landfill at the Spurlock Station has been contaminating underlying groundwater since at least 2005 with concentrations of arsenic up to 16 times the federal Maximum Contaminant Level (MCL), sulfate 3.5 times the Secondary MCL (SMCL), iron 11 times the SMCL, and total dissolved solids (TDS) 4 times the SMCL. Contaminated groundwater has been documented approximately 750 feet beyond the landfill permit boundary, near a receiving stream. Both the concentrations of contaminants and the number of contaminated wells have increased over time. The CCW disposal site is located adjacent to three receiving streams that flow to the Ohio River approximately one mile away.
Test of Proof

One phase of the Spurlock Station ash landfill (Area A) is located on a ridge and two phases (Areas B and C) are located in spring-fed hollows, each containing an intermittent stream. The groundwater monitoring system consists of downgradient wells positioned in topographically low elevations in three adjacent hollows to the northeast (well IW-7), to the east (wells A and IW-8), and to the southeast (well IW-6). According to Eastern Kentucky Power Cooperative (EKPC), once filling began in Area C for a permit expansion granted in 2005, two additional wells, MW-2A and MW-3A, were to be installed in the eastern hollow, and wells A, IW-6, and IW-7 would be removed (EKPC, 2003). Once those wells were closed, groundwater from only one hollow would be monitored. Results for wells MW-2A and MW-3A have not been reported to the Kentucky Division of Waste Management (KDWM) as of 2009 (EKPC, July 2009), indicating that filling in Area C had not yet commenced.

The oldest groundwater data available in State files for the Spurlock Station are from May 2005 (EKPC, 2005). The monitoring system in 2005 was the same as in the first quarter of 2009. According to EKPC, there are no upgradient wells, three downgradient wells, and one side-gradient well (EKPC, 2005; EKPC, 2009).

| IW-6 (MW-2) – downgradient, southeast hollow | IW-8 (MW-1) – downgradient, east hollow |
| IW-7 (MW-3) – downgradient, northeast hollow | Well A – sidegradient, east hollow |

Groundwater monitoring in March 2005 indicated multiple exceedances of a federal MCL and SMCLs (EKPC, 2006):

<table>
<thead>
<tr>
<th>Parameter (EPA Standard in mg/L)</th>
<th>Well (Exceedances of EPA Standards in mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (0.01)</td>
<td>IW-7 (0.022, 2.2 times the standard)</td>
</tr>
<tr>
<td>Iron (0.3)</td>
<td>IW-8 (3.29, 11 times the standard)</td>
</tr>
<tr>
<td>Sulfate (250)</td>
<td>IW-7 (854, 3.4 times the standard)</td>
</tr>
<tr>
<td>Total Dissolved Solids (500)</td>
<td>IW-6 (608)</td>
</tr>
<tr>
<td></td>
<td>IW-7 (1,850, 3.7 times the standard)</td>
</tr>
<tr>
<td></td>
<td>IW-8 (632)</td>
</tr>
</tbody>
</table>

Arsenic concentrations in IW-7 have been greater than the MCL for every sampling event since the March 2005 sample, with concentrations ranging from 0.0193 mg/L in November 2008 to 0.16 mg/L in June 2009, 16 times the MCL (EKPC, July 2009).

The only statistical analysis found in State files for the Spurlock Station was for the April 2006 sampling event (EKPC, July 2006). However, EKPC did not make any conclusions of the results, choosing instead to simply present the results. EKPC considered well IW-8 the “base well” to which all other wells are compared, even though IW-8, like the other wells, is downgradient from the CCW disposal areas. Nevertheless, EKPC used the mean concentrations from IW-8 as the baseline for comparison. The results indicated that contaminated groundwater has migrated to hollows to the northeast (IW-7), east (Well A and IW-8), and southeast (IW-6).
Comparing the results of the June 2009 sampling event with those of the March 2005 sampling event, higher concentrations of TDS and arsenic in 2009 suggest a worsening release of CCW constituents to underlying groundwater. Further, the concentrations continue to exceed MCLs and SMCLs:

<table>
<thead>
<tr>
<th>Parameter (EPA Standard in mg/L)</th>
<th>Well (Exceedances of EPA Standards in mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (0.01)</td>
<td>IW-7 (0.16, 16 times the standard)</td>
</tr>
<tr>
<td>Sulfate (250)</td>
<td>IW-6 (276)IW-7 (870, 3.5 times the standard)</td>
</tr>
<tr>
<td>TDS (500)</td>
<td>IW-6 (820)IW-7 (2,190, 4.3 times the standard)IW-8 (505)Well A (533)</td>
</tr>
</tbody>
</table>

The data and information reviewed from state files for the Spurlock Station indicate that:

- Arsenic, TDS, and sulfate concentrations in wells downgradient of the landfill continue to indicate a release of CCW contaminants to groundwater;
- The most contaminated well, IW-7, is located approximately 750 feet northeast of and beyond the landfill permit boundary in a spring-fed hollow (EKPC, 2003), indicating that contaminated groundwater has flowed off the landfill property and likely into the receiving stream;
- The rate and direction of groundwater flow cannot be verified because the KDWM does not require that potentiometric surface diagrams be developed; however, EKPC has concluded that shallow groundwater generally flows towards the receiving streams in the adjacent hollows;
- Although required to do so by their permit, EKPC rarely performs statistical analysis of groundwater data that reflects increasing concentrations of contaminants. When the analysis was performed in 2006, the data indicated that statistically significant increases (SSIs) occurred at the wells – further indicating a release of CCW to the underlying groundwater, yet no assessment monitoring was required at the landfill;
- There is no unaffected upgradient well at the landfill. All wells are downgradient and contain at least one CCW constituent concentration above an EPA standard. Thus the 2006 statistical analysis
compared contaminated water to other contaminated downgradient water to confirm downgradient contamination.

Constituents Involved
Arsenic, sulfate, iron, and total dissolved solids

At Risk Populations

Private and public drinking well data was obtained for Spurlock Station via Kentucky’s Well Log GIS layer. The results were 25 private wells within a two-mile radius and 3 public wells within a five-mile radius of the Spurlock Station. It is possible that data may be inconclusive or missing in both GIS layers presented.

The Spurlock Station and CCW landfill are located in a karst limestone area – where cave systems allow very rapid flow of contaminated groundwater practically any direction.

Incident and Date Damage Occurred/Identified
Exceedances of MCLs and SMCLs were first monitored in groundwater in March 2005.

Regulatory Actions
There was no indication in State files that the KDWM considers the arsenic, sulfate, and TDS exceedances, EKPC’s failure to perform routine statistical analyses, or the results of the statistical analyses to be permit violations. Further, there is no indication that KDWM has required EKPC to conduct assessment monitoring.
(development of a more comprehensive groundwater monitoring program when contamination has been detected), or off-site surface water monitoring to define the horizontal extent of contamination. In addition, the KDWM has not undertaken its own monitoring of off-site domestic wells or surface waters.

Wastes Present
Fly ash, bottom ash, and flue gas desulfurization (FGD) wastes, including FGD gypsum, are disposed of in the landfill (KDWM, 2004).

Type(s) of Waste Management Unit
According to EKPC’s March 24, 2009 CERCLA 104(e) response to EPA’s request for information (EKPC, March 2009), EKPC operates a 57-acre bottom ash pond, with a capacity of 1,750,000 cubic yard. EKPC estimated that its current storage was 1,500,000 cubic yards as of August 25, 2008. EKPC sluices only bottom ash to this pond, and fly ash and gypsum are landfilled in a dry “special waste” landfill (EKPC, March 2009).

One special waste landfill that contains CCW is permitted at the Spurlock Station. The landfill was originally permitted as an “inert landfill” in 1979 (KDWM, 2005). According to the KDWM, a construction/operation permit was issued on September 20, 1982. The permit was renewed in 1996, and the KDWM approved a horizontal expansion of 389 acres for Areas A, B, and C on February 22, 2005. The horizontal landfill expansion areas have a 2-foot thick compacted clay liner with a permeability of 1×10^{-7} cm/sec (EKPC, 2003). The file review was unable to determine if a liner is present in the originally permitted disposal areas.

EKPC performed a “liner risk analysis” as part of their application for a horizontal expansion further into adjacent hollows. The risk analysis included a Synthetic Precipitation Leaching Procedure (SPLP) for fly ash and bottom ash. The result of that test showed arsenic leaching from the ash at 0.066 mg/L, or 6.6 times higher than the current EPA MCL. That result is consistent with arsenic being found above the EPA standard in one on-site well (IW-7) since at least 2005. EKPC was not concerned about the SPLP result, concluding that the proposed liner meets permit standards (EKPC, 2003).

The Spurlock Station also has a bottom ash pond that is approximately 3,800 feet (0.7-mile) long and approximately 200 feet from the Ohio River and was commissioned in 1976. No monitoring data or other information for the ash pond was available for this report.

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
Shallow groundwater conditions exist in weathered, fractured bedrock, and the flow direction is a reflection of the surface topography (EKPC, 2003). Groundwater flows in secondary fractures and joints in a karst limestone and shale aquifer. The soil above the bedrock is less than one foot deep along the sideslopes of the hollows (EKPC, 2003); therefore, there is little naturally-occurring pollutant attenuation beneath the liner. The groundwater flow velocity at Spurlock Station is very high – up to 400 feet per year (EKPC, 2003). A dye trace investigation performed at the landfill showed that groundwater from the landfill area emerges at springs in the hollows (EKPC, 2003). Groundwater flow directions in karst limestone areas can be highly unpredictable, sometimes changing direction in response to heavy rainfall events. The dominant direction of groundwater flow is probably to the northeast toward the Ohio River.
All wells on-site are shallow and screened in fractured bedrock. Well IW-6 is 33.8 feet deep, and the depth to water is 21.8 feet; IW-7 is 32.5 feet deep, and the depth to water is 19.4 feet; and IW-8 is 28.5 feet deep, and the depth to water is 22.5 (EKPC, 2003). No well depth was provided in the file for Well A but it, too, is expected to be shallow. No potentiometric surface diagrams, which can be used to determine the direction of groundwater flow, were found in the file. KDWM does not require that they be prepared.

Sources

Entity/Company – Location
NRG Energy d/b/a Louisiana Generating, LLC - Big Cajun 2 Power Plant
10431 Cajun Road
New Roads, LA 70760
Pointe Coupee Parish
Latitude: 30.727778 Longitude: -91.376667

Determination
Demonstrated damage to groundwater moving off-site (at property boundary)

Probable Cause(s)
Leaching of coal combustion waste (CCW) constituents from one or more ponds to groundwater

Summary
The Big Cajun 2 Power Plant has five CCW ponds that are contaminating underlying groundwater. Selenium concentrations in the groundwater from 1994 to 1999 exceeded the federal Maximum Contaminant Level (MCL) in all five monitoring wells at concentrations up to 1.32 mg/L (26.4 times the MCL). Concentrations of other toxic metals have not been measured in the monitoring wells. Since at least 1989, total dissolved solids (TDS) in the groundwater have been greater than the Secondary MCL (SMCL), with a maximum concentration of 1,800 mg/L (3.6 times the SMCL). Louisiana Department of Environmental Quality (LDEQ) determined that the groundwater monitoring system was grossly inadequate and required NRG to install 10 additional downgradient wells. However, none of the new wells are off-site, even though one existing well adjacent to the property line shows that contamination is moving off-site.
Test of Proof

Since November 1989, five groundwater monitoring wells have been sampled for pH, selenium, calcium, and total dissolved solids (TDS). Sampling results since 1989 (the oldest noted in the file review) showed TDS concentrations that exceeded the SMCL (500 mg/L) in the two most hydraulically downgradient wells: MW-85C (944 mg/L) and MW-85D (1,024 mg/L) (Environmental Management, 1992). Those concentrations were over two times higher than TDS concentrations in the most upgradient well. MW-85C and MW-85D are downgradient of the coal ash ponds near the Primary Treatment Pond and the Surge Pond.

Groundwater sampling revealed that selenium concentrations were repeatedly greater than the MCL (0.05 mg/L) from November 1994 to November 1999 for all wells on-site: the designated “upgradient” well MW-85A (10 events, maximum 0.3 mg/L); MW-85B (9 events, maximum 0.39 mg/L); MW-85C (9 events, maximum 1.32 mg/L); MW-85D (9 events, maximum 0.333 mg/L); and MW-85E (9 events, maximum 1.23 mg/L) (NRG, 2009a).

By 2001, TDS concentrations in downgradient wells, and the number of wells with TDS concentrations greater than the SMCL, had increased (Shaw, 2007a). For the period from March 2000 to March 2007, MW-85C had TDS concentrations greater than the SMCL in 12 of 15 monitoring events; MW-85D had concentrations greater than the SMCL in 10 of 15 events; and MW-85E had concentrations greater than the SMCL in all 15 events, with the highest concentrations reported at up to 1,800 mg/L. MW-85E is located adjacent to the Bottom Ash Pond.

The trend of ever increasing TDS concentrations continues into current monitoring periods. For the five groundwater sampling events from September 2007 to September 2009, TDS concentrations in MW-85C were greater than the SMCL for every event, and the average concentration was 842 mg/L (17% increase since 2007); MW-85D TDS concentrations were greater in every event, and the average concentration was 899 mg/L (30% increase); and MW-85E TDS concentrations were also greater than the SMCL in every event with the average concentration being 1,662 mg/L (11% increase).

Increased calcium concentrations correspond to increased TDS concentrations, and calcium, often a highly soluble constituent in CCW, is indicative of CCW leachate from The Big Cajun 2 Power Plant’s CCW disposal ponds. When the results for calcium concentrations averaged from the first two sampling events in August 1989 and March 1990 are compared to average concentrations for two recent events in March and September 2009, the data indicate little change in the designated upgradient well MW-85A (79 mg/L in 2009 compared to 76 mg/L in 1989/1990, a 4% increase), but significant changes in downgradient wells. For example, data show a substantive increase in MW-85B, located adjacent to the fly ash pond (87 mg/L in 2009 compared to 62 mg/L in 1989/1990, a 40% increase); a substantive increase in downgradient well MW-85C (139 mg/L compared to 109 mg/L, a 28% increase); a slight increase in downgradient well MW-85D (133 mg/L compared to 121 mg/L, a 10% increase); and the most substantive increase in MW-85E (256 mg/L compared to 96 mg/L, a 167% increase) (Environmental Management, 1992; NRG, 2009a).

NRG consultants conducted extensive statistical analyses of groundwater monitoring data collected between October 1993 and March 2009. The consultants found statistically significant increases (SSIs) of calcium and TDS in wells MW-85C, MW-85D, and MW-85E using three different statistical methods (NRG, 2009b).

Constituents Involved
Selenium, total dissolved solids (TDS), and calcium (as an indicator parameter)
At Risk Population
There are eleven public drinking water sources within five miles of the Big Cajun 2 Power Plant, which lies on the border of the Point Coupée and West Feliciana parish. Each of these public drinking water wells serves local developments of at least 60 citizens. Four of the public drinking water wells are downgradient of the Big Cajun 2 Power Plant. Three private drinking water wells are within two miles of Big Cajun and serve private residences. Well data was obtained from the Louisiana Department of Natural Resources (DNR) GIS Well Log Data Layer, and some well records may be missing or incomplete.

Incident and Date Damage Occurred / Identified
Exceedances of the MCL for selenium in groundwater date to November 1994. The SMCL for TDS has been exceeded by increasing degrees since 1989.

Regulatory Actions
LDEQ issued a Notice of Deficiency to NRG with regard to its CCW ponds and permit renewal at Big Cajun 2 Power Plant, and determined that the groundwater monitoring system for the CCW ponds was grossly inadequate. LDEQ required NRG to install 10 additional wells in downgradient directions from the CCW ponds (Shaw, 2010). Further, LDEQ is requiring that a true background well be installed, although NRG Big Cajun concluded that “it is not possible at this time to conclusively specify an upgradient . . . well” (Shaw, 2010). Of the ten new wells, seven wells are required for the extreme western edge of the fly ash pond in an area that was once believed to be “upgradient” and three are required along the eastern boundary of...
the primary treatment and surge ponds. The additional downgradient wells along the western boundary confirm that well MW-85A, which is located at the western property line and at times has exceeded groundwater standards (most notably for selenium), is not an “upgradient” but rather downgradient, and has been affected by CCW. The location of well MW-85A at the western property line suggests that contaminated groundwater above regulatory standards has migrated off-site. Despite this evidence, LDEQ has never required any off-site groundwater sampling (Guilliams, 2010).

Wastes Present
Fly ash, bottom ash, and unspecified wastewater treatment pond solids

Type(s) of Waste Management Unit
The Big Cajun 2 Power Plant includes these land disposal units: a fly ash pond, bottom ash pond, a surge pond, and 2 “treatment” ponds (NRG, 2009d). CCW was reportedly first placed in the 175-acre fly ash pond and the 66-acre bottom ash pond in 1980. The combined CCW pond complex is over one-mile long. The 25.4-acre “primary treatment” pond and the 7.1-acre “secondary treatment” pond were commissioned in 1979 (NRG, 2009d). The permit application for the bottom ash and fly ash ponds was submitted to LDEQ in 1982, and the permit was issued on June 20, 1986.

As of June 2009, the fly ash pond was 65 percent full, and the bottom ash pond was 54 percent full (NRG, 2009c).

Cajun Electric applied for a Type I landfill permit in March 2007 for a new solid waste landfill to dispose of gypsum, a by-product of the plant’s flue gas desulfurization (FGD) air pollution control waste (Shaw, 2007b). LDEQ identified numerous deficiencies in that application in a letter dated March 2, 2009, and NRG responded to those deficiencies in June 2009 (Shaw, 2009). NRG later rescinded that application in August 2009 (Guilliams, 2010).

Active or Inactive Waste Management Unit(s)
Active

Hydrogeologic Conditions
Big Cajun 2 Power Plant CCW disposal areas are located adjacent to the Mississippi River, and groundwater levels range from 8 to 14 feet below the top of the well casing (NRG, 2009). Five groundwater monitoring wells were installed in 1985 (LDEQ, 1986).

Potentiometric surface diagrams from November 1992 (Environmental Management, 1992) illustrated a flow direction towards the Mississippi River for all wells, with MW-85C and MW-85D being the most hydraulically downgradient wells. These eastern-most wells, located on the eastern-most edge of all ponds, are located almost one mile west of the Mississippi River.

Beginning in approximately 1998 (Benchmark, 1998), Cajun Electric began reporting that at times the groundwater flowed west and away from the river. This westerly trend, for wells that are located almost a mile or more away from the river, continues. Shaw Environmental concluded in 2007 on behalf of Cajun Electric that the flow away from the river was due to higher river stages (Shaw, 2007a). This conclusion was not supported by their own data which indicates the surface water elevations measured at the river were 13 feet (Mar. 2007) to 15 feet (Sept. 2007) lower in elevation than the potentiometric surface elevations reported one mile west at the treatment pond area wells. Historically, the highest groundwater elevations have been found at MW-85C and MW-85D, which are downgradient of all ponds and are located nearest
the Primary Treatment Pond, the Surge Pond, and the Bottom Ash pond. Big Cajun most recently recognized that “divergent flow exists to the east and west originating from the center of the ash impoundment area” (Shaw, 2010). The higher groundwater elevations in pond area wells suggest groundwater mounding beneath the ponds due to leakage from one or more of those ponds, causing localized reversal of groundwater flow to the west away from the river, and invalidating MW85A as an “upgradient” monitoring well.

Additional Narrative

Beginning in 2006, LDEQ approved requests to fill hollow barge mooring cells in the Mississippi River with bottom ash and fly ash (NRG, 2008). Over 11,500 cubic yards of fly ash and bottom ash from Big Cajun 2 Power Plant were placed in barge mooring cells in the Mississippi River as a “beneficial use” project. The barge mooring cells are positioned approximately 100 to 400 feet from shore in the river and were initially filled with sand and limestone but over time, large gaping holes (several feet wide) were created from barge impacts – resulting in the loss of sand and limestone into the river. LDEQ approved placing 4,050 cubic yards of fly ash and bottom ash in the cells in 2006 as a “beneficial use” of that material. LDEQ later approved another request for the same use for 7,500 cubic yards of fly ash and bottom ash in October 2008 (LDEQ, 2008).

Big Cajun 2 Power Plant presented analytical data to LDEQ in its 2006 (NRG, 2008) “beneficial use” application showed that the fly ash used in the mooring cells contained the following metals concentrations: arsenic (16 mg/kg); barium (666 mg/kg); cadmium (0.39 mg/kg); chromium (21.7 mg/kg); manganese (161 mg/kg); nickel (22.5 mg/kg); selenium (5.16 mg/kg); vanadium (92.7 mg/kg); and zinc (59.8 mg/kg).

LDEQ could not confirm if any water or sediment is monitored in the Mississippi River near the mooring cells to ensure that toxic metals or other harmful constituents are not leaching from the coal ash (Guilliams, 2010).

Sources

Guilliams. 2010. Phone conversation with Scott Guilliams, Senior Technical Advisor, Waste Permits Division, LDEQ (May 24, 2010).

Shaw. 2009. Letter from Valeria Mayhall, Shaw Environmental, to Thomas Harris, Administrator, LDEQ, Re: Response to Notice of Deficiency, Big Cajun II, Unit 4, Type I Solid Waste Landfill (June 15, 2009).

Entity/Company – Location
CLECO Power LLC - Dolet Hills Power Station
963 Power Plant Road
Mansfield, LA 71052
De Soto Parish
Latitude: 39.0325 Longitude -93.5675

Determination
Demonstrated damage to groundwater moving off-site (half mile from coal ash disposal sites)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from CCW ponds, and from a CCW landfill

Summary
Nine CCW ponds and one CCW landfill have contaminated four distinct groundwater zones above Maximum Contaminant Levels (MCLs) for more than one parameter at the Dolet Hills Power Plant. Groundwater monitoring has documented MCL exceedances for arsenic in one surge pond compliance well and lead in one well at a metal cleaning waste pond that also receives fly ash. Selenium has been reported at the CCW landfill monitoring wells at 3.5 times the MCL in a groundwater zone that discharges to the surface water. Total Dissolved Solids (TDS) have exceeded the Secondary MCL (SMCL) in 28 of 30 coal ash pond-area wells at up to a half-mile from the nearest disposal unit and at concentrations up to 28 times the SMCL. Sulfate has also exceeded the SMCL in 20 of 30 pond area compliance wells at concentrations 16 times the SMCL a half-mile from the nearest CCW disposal unit. Contaminated wells exist at each compliance boundary with no additional downgradient monitoring wells. No off-site groundwater monitoring or surface water sampling has occurred.
Test of Proof

There are at least 36 groundwater monitoring points (wells and piezometers) associated with six groups of solid waste disposal units (CLECO, May 2008). The current groundwater monitoring program includes these parameters: pH, specific conductance, total dissolved solids (TDS), alkalinity, sulfates, chlorides, iron, copper, calcium, phosphorus, and zinc, but does not routinely monitor for other metals present in coal ash.

Semi-annual groundwater sampling in April 2008 found substantial SMCL exceedances in the most downgradient wells at every CCW disposal unit and one major exceedance of the MCL for the trace element selenium (CLECO, May 2008). CLECO Power, LLC concluded that the results were consistent with the results of previous sampling events, indicating that exceedances are routine. Exceedances were as follows (TDS SMCL = 500 mg/L, sulfate SMCL = 250 mg/L and EPA Health Advisory Level = 500 mg/L):

- **3 Bottom Ash Ponds** – TDS was greater than the SMCL in seven of nine compliance wells (3,839 mg/L average, 13,900 mg/L max). Sulfate exceeded the SMCL in four compliance wells (1,274 average, 1,640 mg/L max) and was highest in wells with the highest TDS. The most hydraulically downgradient compliance well (MW-28) is located approximately 0.5-mile from the nearest bottom ash pond, and concentrations of TDS (2,390 mg/L) and sulfates (1,080 mg/L) were more than four times higher than the SMCLs. MW-28 is approximately 125 feet from the property line (LDEQ, 1992).
- **3 Surge and Auxiliary Surge Ponds** – The average TDS concentration was six times higher than the SMCL in ten of ten compliance wells (3,001 mg/L average, 6,690 mg/L max). Sulfate was the highest in wells with the highest TDS. Sulfate exceeded the SMCL in eight compliance wells (1,698 mg/L average, 3,860 mg/L max). The pH in one well (OW-4, 5.9 units) was less than the SMCL.
- **Metal Cleaning Waste Pond** – Average TDS of two compliance wells was more than ten times higher than the SMCL (5,200 mg/L average, 5,250 mg/L max). Sulfate also exceeded the SMCL by a similar magnitude in both compliance wells (2,465 mg/L average, 3,580 mg/L max). The SMCL for chloride was also exceeded in one well by nearly six times (1,480 mg/L max). The SMCL for iron was also exceeded in both wells (43.3 mg/L average, 86 mg/L max, 287 times higher than the SMCL). The pH in one well (OW-7, 5.05 units) was less than the SMCL.
- **Plant Discharge Collection Pond** – TDS was greater than the SMCL in all five compliance wells (2,071 mg/L average, 4,670 mg/L max). Sulfate also exceeded the SMCL in three compliance wells (1,209 mg/L average, 2,150 mg/L maximum). The SMCL for chloride was also exceeded in three wells (335 mg/L average, 385 mg/L maximum).

At the disposal sites above, wells with the highest TDS and sulfate concentrations also had high specific conductance, calcium, and alkalinity concentrations.

- **Lignite Runoff Pond** – TDS was greater than the SMCL in all four compliance wells (1,735 mg/L average, 2,390 mg/L max). Sulfate also exceeded the SMCL in three compliance wells (1,877 mg/L average, 3,900 mg/L max). High specific conductance and calcium concentrations corresponded to the highest TDS and sulfate concentrations. The most hydraulically downgradient compliance well (OW-28) for this area is located approximately 0.4-mile away. Groundwater in this well exceeds SMCLs for TDS (2,390 mg/L) and sulfates (1,080 mg/L).
- **Fly Ash / Scrubber Sludge Landfill:**
 - **Groundwater Zone 1 that discharges to surface water** – TDS was up to 5.3 times higher than the SMCL in one of three compliance wells (MW-2A, 2,660 mg/L maximum). Selenium was reported in that well at 0.173 mg/L, 3.5 times higher than the MCL. The pH in all wells (4.82 average, 4.06 lowest) was less than the SMCL.
 - **Groundwater Zone 3 (deeper)** – the only compliance well in that zone (MW-4), had a TDS concentration of 16,000 mg/L maximum, 32 times higher than the SMCL. Sulfate, at 9,830
mg/L maximum was also more than 39 times the SMCL. The pH for that well (3.74 units) was much less than the SMCL. Selenium was not reported at a meaningful concentration because the report limit of the analysis (<1.25 mg/L) was 25 times higher than the MCL (0.05 mg/L).

- Groundwater Zone 4 (deepest) – in the only compliance well in that zone (MW-8A), TDS was greater than the SMCL (1,450 mg/L max). Sulfate was also greater than the SMCL (768 mg/L max). The pH was less than the SMCL (6.05 units).

- Unspecified Groundwater Zones – three wells (MW-5, MW-6A, and MW-7) were sampled; however, CLECO concluded that the wells monitor “in between” zones of groundwater. Potentiometric surface data from those wells were not used to develop area groundwater flow diagrams. One well (MW-5) that is situated in the most hydraulically downgradient position along a stream valley centerline substantially exceeded the SMCL for TDS (4,970 mg/L max), sulfates (3,200 mg/L max), and pH (5.67). CLECO concluded that MW-5 is upgradient of the landfill; however, potentiometric surface diagrams clearly show that it is not upgradient.

When the April 2008 compliance well groundwater results are compared to the sole “reference well” or background well (OW-27, Zone 4) at the site, the reported groundwater values far exceeded the reference values, which are as follows: TDS, 513 mg/L; sulfates, 224 mg/L; chlorides, 17 mg/L; iron, 0.522 mg/L; and pH, 6.82 units. CLECO concluded that the high concentrations in the downgradient wells may be due to lignitic clays and lignite beds that are present in the subsurface, and promised to evaluate the trend further in future sampling events.

The extremely low pH in the CCW landfill wells has been problematic since at least 1992 (LDEQ, 1992). A reduction of pH from 6 units to 4 units from 1986 to 1992 in eight of nine wells indicated a decisive shift to more acidic conditions that do not meet the SMCL of 6.5 to 9.5.

CLECO does not normally sample heavy metals in CCW pond/impoundment groundwater monitoring; however, some metals were tested as part of Initial Sampling Events (ISEs) of 34 wells in August and December 2009 after issuance of a new permit and the installation of new wells (OW-31 – OW-37) (CLECO, 2010a). The Louisiana Department of Environmental Quality (LDEQ) also required that a statistical analysis be performed for CCW pond-area wells (but not the landfill) for pH, specific conductance, alkalinity, copper, and zinc. The analysis found statistically significant increases (SSIs) for specific conductance and alkalinity. CLECO argued that the SSIs were not relevant because neither parameter was included in the LDEQ Risk Evaluation/Corrective Action Program (RECAP), the SMCLs are not enforceable, and the SMCLs are only “guidelines” (Eagle, 2010). CLECO concluded that CCW ponds have not adversely affected the groundwater at the site. However, when the results of the ISE are closely evaluated, the sampling event found that:

- The MCL of 0.01 mg/L for arsenic was exceeded in one new surge pond well (OW-33) at 0.0156 mg/L in the December sampling event.
- The MCL of 0.015 mg/L for lead was exceeded in the one new metal cleaning waste pond well (OW-36), monitoring Groundwater Zone 4 (deepest) at 0.023 mg/L and 0.019 mg/L respectively in the August and December sampling events.
- No wells are downgradient of wells with SSIs. There are no wells further downgradient from metal cleaning waste pond wells OW-35 and OW-36 that had SSIs for alkalinity or surge pond Well OW-1 that had a SSI for specific conductance. Thus, the results documented the spread of contamination to the farthest points at which it could be monitored.
- Excessively high report (detection) limits were used. The laboratory report limits were above the typical method report limit, resulting in incomplete and indeterminate statistical determinations. The
report limits used by CLECO were too high to observe changes in groundwater quality between wells and from previous sampling events. For example:

- Using the same laboratory method (EPA 6020), the Report Limit used for selenium in the 2009 ISE Event was 9 times higher than what the laboratory used in April 2008 (0.045 mg/L for the ISE versus 0.005 mg/L in April 2008).
- The Report Limits used in the 2009 ISE event were sometimes virtually the same as the MCL for other metals. For example, arsenic (0.009 mg/L versus 0.01 mg/L MCL); lead (0.014 mg/L versus 0.015 mg/L MCL); and thallium (0.002 mg/L versus 0.002 mg/L MCL). Such limits do not allow reviewers to detect whether contamination is occurring until after pollutant levels have already exceeded or virtually exceeded the MCLs.

Comparing the results of groundwater sampling of the reported first year of monitoring in 1986 (CLECO, 2000), the year when ash ponds were commissioned, to the April 2008 sampling event (CLECO, 2008) show substantial changes in groundwater quality that indicate a release of CCW contaminants:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>1,523</td>
<td>13,900</td>
<td>+812%</td>
</tr>
<tr>
<td>Sulfate</td>
<td>615</td>
<td>1,380</td>
<td>+124%</td>
</tr>
</tbody>
</table>

Constituents Involved

Arsenic, lead, selenium, chlorides, TDS, sulfate, iron, and pH; SSIs for specific conductance and alkalinity; calcium as an indicator parameter

At Risk Population

There are two private drinking water wells for domestic use within a two mile radius. These private wells are located approximately 1.5 miles northwest of the Dolet Hills Station. In addition, there is one public drinking water well located 4.5 miles southwest of the Dolet Hills Station. This public water source serves approximately 60 citizens on a yearly basis. Data was obtained from the Louisiana Department of Natural Resource's (DNR) GIS Well Log Data Layer. This data layer is constantly being updated as Louisiana DNR is in the process of converting paper well logs to digitized records that can be mapped. It is possible that some well data is missing as the Well Log Data Layer is still being updated.

Incident and Date Damage Occurred / Identified

Ongoing exceedances of groundwater standards since at least 1992

Regulatory Actions

In 2008, LDEQ required that assessment monitoring activities be conducted at the bottom ash ponds, the surge/auxiliary pond, the metal cleaning waste pond, the plant discharge pond, the lignite runoff pond, and the fly ash-scrubber sludge landfill (LDEQ, 2008). However, no assessment activities have included any off-site or off-property sampling points (Trahan, 2010). LDEQ later approved a return to detection monitoring and the revised groundwater sampling and analysis plan submitted in May 2009 (LDEQ, 2010b). SSIs for specific conductance and alkalinity for the August and December 2009 sampling events required that the facility initiate re-sampling and assessment monitoring, and/or demonstrate that the contamination was due to an alternate source or natural variation (LDEQ, 2010a). The status of that assessment remains unclear.
Wastes Present
Bottom ash, fly ash, flue gas desulfurization (FGD) sludge, limestone pile runoff solids, metal cleaning wastes, and lignite runoff solids

Type(s) of Waste Management Unit
Dolet Hills Power Station has ten permitted CCW disposal units: Fly Ash/Scrubber Sludge landfill; Ash Basin No. 1 (bottom ash); Ash Basin No. 2 (bottom ash); Secondary Basin (bottom ash); Surge Pond No. 1 (scrubber sludge and unspecified ash); Surge Pond No. 2 (scrubber sludge and unspecified ash); Auxiliary Surge Pond (scrubber sludge and unspecified ash); metal cleaning waste pond; plant discharge collection pond; and lignite runoff pond (CLECO, Mar. 2009 and CLECO, May 2008). A limestone runoff pond also exists but it is not permitted as a solid waste disposal unit. CCW was placed in the following disposal units beginning in 1986: Ash Basin No. 1, Ash Basin No. 2, Secondary Basin, Surge Pond No. 1, Surge Pond No. 2, and Auxiliary Surge Pond (CLECO, Mar. 2009).

The metal cleaning waste pond receives two liquid waste streams: fly-ash laden wash water from the air heater system, and boiler and turbine wash water (Eagle, 2007a). The primary solid collected in the pond is fly ash. CLECO considers storage of the fly ash in the pond to be “temporary,” even though the pond has 25 years of additional capacity before the solids have to be removed. The liquid contents of the metal cleaning waste pond are routed to the waste water treatment system.

The discharge collection pond receives effluent from the wastewater treatment plant, neutralized demineralizer regeneration wastes, cooler tower blowdown, demineralizer pretreatment filter backwash, and clarifier blowdown (Eagle, 2007b). CLECO also considers this pond to provide “temporary” storage of any solids deposited in this pond without specifying how often the solids are removed.

Active or Inactive Waste Management Unit(s)
Active

Hydrogeologic Conditions
Four distinct permeable zones of groundwater exist at the site in predominantly sandy soils (CLECO, May 2008). Groundwater Zone 4 (the deepest) is present beneath all surface impoundments and ponds in the plant area and beneath the landfill. Groundwater Zone 3 is found predominantly beneath the metal cleaning pond. The upper-most zones (Groundwater Zones 1 and 2) are only located south at the FGD landfill, and Zone 1 discharges to surface water. Although six piezometers are used at the landfill to determine the direction of groundwater flow in Groundwater Zone 2 (beneath Zone 1), no monitoring wells exist in this zone to determine groundwater quality. Although two wells and six piezometers exist at the landfill in Groundwater Zone 3, only one of the wells is sampled and it is not located in the most hydraulically downgradient position or able to monitor groundwater from the western side of the landfill.

Sources

Trahan. 2010. Email correspondence from Drukell Trahan, Waste Permits Division, Geological Services Section (May 25, 2010).
Entity/Company – Location
CLECO Power, LLC - Rodemacher Power Station
275 Rodemacher Road
Lena, LA 71447
Rapides Parish
Latitude: 31.393889 Longitude: -92.709167

Determination
Demonstrated damage to groundwater moving off-site (to Lake Rodemacher, Bayou de Jean, and the Red River)

Probable Cause(s)
Leaching of coal combustion waste (CCW) constituents from CCW ponds, a coal ash management area and landfill, and coal storage pile into underlying groundwater

Summary
Groundwater monitoring wells at compliance boundaries for a CCW landfill, seven ponds, and a coal pile at the Rodemacher Station have been contaminated with arsenic up to 5.75 times the federal Maximum Contaminant Level (MCL) and lead exceeding the MCL. The contamination is documented at multiple groundwater wells in two areas separated by Lake Rodemacher. Contamination is moving beyond compliance boundaries for the CCW units, with no other monitoring wells between the boundary, domestic water wells, and nearby waterbodies and no sampling of surface waters. Off-site surface waters are as close as 50 feet from CCW disposal units, and 36 registered water wells exist within a one-mile radius of Rodemacher Station.
Test of Proof

Arsenic and lead were found in groundwater downgradient of multiple CCW disposal units exceeding drinking water standards in wells located at the point of compliance (an imaginary line that connects each monitoring well associated with each disposal unit and beyond which groundwater standards should be met) (CLECO, 2009a&b). There are no monitoring wells downgradient of the contaminated compliance boundary wells and thus between these compliance wells and domestic water wells and nearby surface waterbodies. The contamination is flowing from two distinctly separate areas: 1) the power plant, coal pile area and runoff pond, sludge pond and metal cleaning ponds on the north side of Lake Rodemacher; and 2) the coal ash ponds and CCW landfill area east of the Lake.

Heavy metals are not normally sampled in groundwater monitoring at the Rodemacher Station; however, some metals were tested as part of Initial Sampling Events (ISEs) in September and November 2009 after issuance of a new landfill permit and the installation of new wells. Arsenic sampling was not required, however, for metal cleaning waste pond wells. Groundwater sampling for these two 2009 events found arsenic and lead concentrations greater than the MCL, and greater than the secondary MCLs (SMCL) for chloride and pH, with statistically significant increases (SSIs) as follows (CLECO, Jan. 2010):

- **Arsenic** – in four landfill compliance wells (W-4 southeast side, W-15 south side, W-17 southeast side, and W-18 east side) was measured at 0.0413 mg/L average and 0.0575 mg/L maximum;
- **Arsenic** – in one bottom ash pond compliance well (W-21, north side) was measured at 0.0121 mg/L average and 0.0131 mg/L maximum;
- **Arsenic** – in one coal runoff sedimentation pond compliance well (W-7) was measured at 0.0377 mg/L average and 0.0437 mg/L maximum;
- **Arsenic** – in one “background” well located downgradient of the coal pile (W-1) was measured at 0.0546 mg/L maximum;
- **Lead** – in one well at metal cleaning waste pond #1 (W-9) was measured at 0.0209 mg/L max;
- **Lead** – in one well at metal cleaning waste pond #2 (W-10) was measured at 0.0156 mg/L max;
- **SSIs** were recorded for specific conductance, chloride, and sulfate (all indicators of CCW leachate) for four wells associated with the two metal cleaning waste ponds;
- **Chloride** – a concentration of 392 mg/L was measured in one metal cleaning pond #1 compliance well (W-9), exceeding the SMCL (250 mg/L); and
- **pH** – was less than 6.5 (the minimum SMCL) in 15 of 21 wells on-site.

Semi-annual groundwater sampling in November 2007 (CLECO, Feb. 2008) of eight wells for a parameter list that included no heavy metals and only a few CCW indicator parameters resulted in SMCL exceedances for the most downgradient well from the fly ash and bottom ash ponds. TDS exceeded the SMCL in compliance well (W-3) at 728 mg/L, and the highest specific conductance, alkalinity, and calcium concentrations were also reported in that well. TDS also exceeded the SMCL in the compliance well at the coal sedimentation pond. Levels of pH were measured below the SMCL minimum of <6.5 standard units in six of eight wells on-site.

Comparing results of groundwater sampling at ash pond monitoring well W-3 from the first year during waste placement (1982–1983) to results in 2007 show substantial changes in groundwater quality, which indicate CCW disposal unit leakage (CLECO, 1984 and 2008):
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>9.21</td>
<td>6.73</td>
<td>2.5 unit decline</td>
</tr>
<tr>
<td>Alkalinity (mg/L)</td>
<td>239</td>
<td>282</td>
<td>386</td>
<td>+48%</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>400</td>
<td>408</td>
<td>728</td>
<td>+80%</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>8.2</td>
<td>23.9</td>
<td>67.7</td>
<td>+332%</td>
</tr>
</tbody>
</table>

Constituents Involved
Arsenic, lead, pH, TDS, specific conductance, chloride, and sulfate

At Risk Population
There are 36 registered water wells within a one-mile radius of the plant (CLECO 2007). However, Louisiana’s Department of Natural Resources’ (DNR) Well Log GIS Layer indicated that there are 12 private drinking water wells within a two-mile radius of the site. Louisiana DNR also indicated three public drinking water sources exist within a five-mile radius. Data obtained from DNR’s GIS Well Log could be incomplete.
Incident and Date Damage Occurred / Identified
Exceedances of the SMCL for TDS were first documented in November 1983 and July 1984. Concentrations of pH outside the 6.5 to 8.5 SMCL range were found throughout the site in 1983. In September and November 2009, concentrations of arsenic and lead were found to be exceeding the MCLs.

Regulatory Actions
The Louisiana Department of Environmental Quality (LDEQ) required Rodemacher Power Station to complete “assessment monitoring” for groundwater constituent concentrations that may have been affected by CCW ponds (LDEQ, Dec. 2008). LDEQ allowed a return to detection monitoring in February 2010 (LDEQ, Feb. 5, 2010).

Rodemacher Station submitted a request for a major permit modification of the coal ash management area to construct a Type I landfill, which included a request for a 60-foot height increase in the existing CCW disposal unit, use of coal ash as protective cover, and use of an alternate liner (3 composite liner options proposed) (CLECO, Nov. 2009). LDEQ deemed the request technically complete and publicly noticed the modification in February 2010 (LDEQ, Feb. 17, 2010).

Wastes Present
Bottom ash, fly ash, metal cleaning wastes, clarifier sludge, coal pile runoff

Type(s) of Waste Management Unit
The Rodemacher Power Station has been operational since the mid-1970s (LDEQ, Feb. 2010). The facility includes the following land disposal units: a fly ash pond, a bottom ash pond, an ash management area/Type I landfill, two metal cleaning waste ponds, a coal sedimentation pond, a landfill leachate collection pond, and a clarifier sludge sedimentation pond (CLECO, 2010). The clarifier sludge pond does not have a permit (CLECO, 2009a&b). Waste was first placed the 109-acre fly ash pond in 1982 (CLECO, May 2009). Waste was also first placed in the 36-acre bottom ash pond in 1982. The combined ash pond complex is nearly ¾-mile long. The current coal ash management area/Type I landfill seems to have been constructed over an old coal ash pond (CLECO, 2007).

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
There are no downgradient, off-property monitoring wells to monitor contamination between CCW disposal areas and Lake Rodemacher, the Red River, the Bayou de Jean, or off-site domestic water wells – nor has any off-site sampling of domestic wells or surface water monitoring occurred (Trahan, 2010). CLECO has concluded that the groundwater in the vicinity of the plant is “most likely connected to the Red River to the north and Bayou Jean de Jean to the east at shallow depths” (CLECO, 2007).

Lake Rodemacher and the Bayou Jean de Jean are located approximately 50 feet from CCW disposal units. The uppermost aquifer beneath the waste management units flows towards those surface water bodies (CLECO, January 2010). Groundwater in the power station area where the metal cleaning ponds, the coal sedimentation pond, and a sludge pond are located flows towards Lake Rodemacher. Groundwater beneath the ash ponds and the ash management area/landfill area flows towards Bayou Jean de Jean to the west and south and the Red River to the north. The groundwater gradient is steep – up to approximately 13 percent – and is the steepest nearest the receiving waterbodies (CLECO, Feb. 2008). CLECO Power, LLC has determined that the groundwater seepage velocity is the greatest (3.5 feet per day) at the bottom ash and
fly ash ponds where the property line is adjacent to the CCW disposal units and where groundwater
discharges towards Bayou Jean de Jean and the Red River (CLECO, 2007).

Sources
Environmental Services, Inc.) (Jan. 2010).

CLECO. 2009a. Letter from Brent Croom, CLECO, to LDQEQ, Waste Permit Division, Re: Solid Waste Permit
Modification, Ash Management Area (Nov. 18, 2009).

CLECO. 2009b. Letter from Jared Mayeux, CLECO, to LDEQ, Waste Permits Division, Re: Request for
Acceptance for Change to Groundwater Monitoring Program (July 9, 2009).

Environmental Services, Inc.) (Feb. 2008).

CLECO. 2007. CLECO, Unit 1 Metal Cleaning Waste Pond, Solid Waste Standard Permit Renewal
Application, Rodemacher Power Station (Mar. 9, 2007).

CLECO. 1984. Letter from P. J. Turregano, Environmental Specialist, CLECO, to John Koury, Office of Solid
and Hazardous Waste, Re: Groundwater Monitoring Results (Sept. 4, 1984).

LDEQ. 2010a. LDEQ, Public Notice, Type I Industrial Landfill, Technically Complete Solid Waste Permit
Modification (Feb. 17, 2010).

LDEQ. 2010b. Letter from Cheryl Sonnier Nolan, Assistant Secretary, LDEQ, to Brent Croom, CLECO Power,
Re: Approval of Detection Monitoring Groundwater Sampling and Analyses Plan, (Feb. 5, 2010).

LDEQ. 2008. Letter from Estuardo Silva, Geologist Supervisor, Waste Permits Division, LDEQ, to Brent Croom,

Trahan. 2010. Email correspondence from Drukell Trahan, LDEQ Waste Permits Division, Geological Services
Section (May 26, 2010).
Entity/Company – Location
CMS Energy d/b/a Consumers Energy - J.R. Whiting Generating Plant
4525 East Erie Road
Erie, MI 48133
Monroe County
Latitude: 41.794635 Longitude: -83.445971

Determination
Demonstrated off-site ecological damage to aquatic life

Probable Cause(s)
Effluent discharges to surface water from coal combustion waste (CCW) ponds

Summary
A two-year study by the U.S. Fish and Wildlife Service in the early 1980s examined the effect of effluent discharges from a coal ash basin adjacent to Lake Erie and found elevated concentrations of trace elements identified as potentially harmful in sediments (arsenic, cobalt, possibly nickel, and selenium) and aquatic biota (arsenic, selenium, bromine, possibly cobalt, nickel, and chromium). The study concluded that chronic exposure to higher concentrations could undermine population fitness through increased susceptibility to disease, predation, and reduced reproductive capacity. Organisms identified as especially at risk are those whose mobility is restricted, such as oligochaetes (freshwater worms) and early life stages of fish. No follow-up studies were conducted. The coal ash disposal area involved in this study was in the process of being closed as of 2009.
Test of Proof
The U.S. Fish and Wildlife Service evaluated the effects of a coal ash disposal basin at Consumer’s Power J. R. Whiting Power Plant on the western shore of Lake Erie during 1983 and 1984 (Hatcher et al. 1992). Analysis involved the use of neutron activation analysis (NAA) to determine if potentially toxic trace elements were present in higher concentrations in samples of sediment, fish and benthic macroinvertebrates near a coal ash basin compared to reference stations about 1.8 miles away.

Arsenic and cobalt concentrations (maximum of 0.15 mg/kg and 0.012 mg/kg respectively) were found to be significantly higher in sediments near the primary outfall of the coal ash basin than at the reference stations, and selenium and nickel were more concentrated in sediments examined from at least one of the nearby sampling stations (identified as “proximal” or “affected” in the study). Maximum concentrations for all four trace elements in sediment were below Michigan Department of Environmental Quality criteria for soil cleanup (MDEQ, 2006).

Selenium was significantly more concentrated in both oligochaetes (freshwater worms) and chironomids (non-biting midges) near the coal ash basin outfall than at reference stations, but variations occurred seasonally between the taxa. Arsenic concentrations were higher in oligochaetes near the outfall and were correlated with sediment concentrations, but were below detection limits in fish. Bromine was significantly higher in oligochaetes from nearby stations in both years, but bromine in oligochaetes at all stations was lower in 1984 than in 1983. The oligochaetes, as obligate permanent residents of the sediment, were consistently less dense at proximal stations compared to reference stations over the full course of the study. The study authors found this observation consistent with the conclusion of Bamber (1984) that benthic organisms residing closest to coal ash basin may be incapable of sustaining high population densities in the face of the addition of trace elements from the coal ash.

Selenium, bromine, cobalt, nickel, and chromium were more concentrated in young of the year brown bullheads collected near the coal ash basin in the fall of 1983. Selenium was more concentrated in adult spottail shiners near the coal ash basin in the spring of 1984 when compared with reference sites. Bromine was more concentrated in yearling white bass nearer the basin in the fall of 1983 and 1984. Fish collections found fewer fish near the coal ash basin; specifically, fewer spottail shiners and yearling white bass were caught close to the coal ash basin than at the reference site. The study authors concluded that fish avoidance of increased trace metal concentrations may be occurring. In regard to food chain bioaccumulation dynamics, oligochaetes, chironomids, young of year brown bullheads, and fish in younger stages of development are more at risk from contaminated sediments due to their dependence upon bottom sediments for habitat and food.

Hatcher et al. (1992) (emphasis added) concluded:

Elevated concentration of particular trace elements identified as potentially harmful exist in sediments (arsenic, cobalt, possibly nickel and selenium) and aquatic biota (arsenic, selenium, bromine, possibly cobalt, nickel and chromium) adjacent to a coal ash disposal basin. These elevated concentrations are the result of the transport of coal ash residue from the disposal basin to the surrounding aquatic environment. The documented toxicity of these elements and the disparity between coal ash and sediment concentrations (especially with respect to selenium) raise questions about the long-term effects of continual exposure to higher than background levels (Lemly, 1985a and 1985b). Chronic exposure to higher concentrations could undermine population fitness through increased susceptibility to disease, predation, and reduced reproductive capacity. Organisms especially at risk are those whose mobility is restricted, such as oligochaetes and early life stages of fish.
The final conclusion of this study was:

In light of the possible risk to organisms, the siting of coal ash disposal basin immediately adjacent to the Great Lakes shoreline and the use of coal ash residue as a major constituent of blocks for the creation of near shore artificial reefs in Great Lakes waters needs reevaluation.

Constituents Involved
Arsenic, cobalt, possibly nickel, and selenium (elevated concentrations found in sediments of trace elements identified as potentially harmful to aquatic biota)

Arsenic, bromine, chromium, cobalt, nickel, selenium (elevated concentrations found in aquatic biota)

Incident and Date Damage Occurred / Identified
Scientific study summarized here was conducted in 1983 and 1984. There were no follow-up studies (Poe, 2010).

Regulatory Action
Available information indicated no regulatory actions

Wastes Present
Ponds 3, 4 and 5 received fly ash and some co-disposed liquid waste (low volume plant wastes, treated boiler cleaning wastes from the plant's chemical treatment facility, and treated sewage waste from the Plant's sanitary sewage treatment facility).

Type(s) of Waste Management Unit
Pond 1 - receives bottom ash and, as of June 1, 2008, co-disposed liquid wastes regulated by the site's NPDES permit, MIO001864.

Pond 2 - is separated into two sub-ponds; one for fly ash deposition in the event that the dry fly ash collection system temporarily fails or is down for maintenance

Ponds 3, 4, and 5 - prior to June 1, 2008, received both fly ash and other wastewaters. Since June 1, 2008, these ponds receive only fly ash that is excavated and then trucked from Pond 6 or fly ash collected in a dry silo, moistened to allow compaction to a specified density, and then trucked to these ponds.

Pond 6 - receives fly ash only (EPA, 2009).

Active or Inactive Waste Management Unit
Since the JR Whiting Plant went online in 1952, at least six impoundments have been constructed to receive bottom ash and fly ash (and co-disposed liquid wastes). Ponds 3 to 5 were involved in the ecological studies summarized here. Ponds 3 and 4 were constructed in 1959, Pond 4 was expanded in 1966, Pond 5 was constructed in 1974 and all were operated as a unit since the late 1970s. They have a total acreage of 82.4 acres. Final Closure for these ponds was approved by MDEQ in 2005. In recent years fly ash disposal at the plant has been minimal, with almost all ash collected dry and sold for cement manufacture (Consumers Energy, 2009).

Hydrogeologic Conditions
The coal ash ponds are located on Woodtick Peninsula, over shoreline alluvial deposits on the west side of Lake Erie.

Additional Narrative
USEPA (2007) rejected this damage case (#76 Lake Erie, Ohio) because of “insufficient evidence to confirm that fossil fuel combustion wastes are the source of contamination in this case.” It is clear that USEPA never actually
bothered to look review the information because this study was a carefully designed examination by the U.S. Fish and Wildlife Service that was published in a peer-reviewed scientific journal and was specifically designed to evaluate the effects of coal ash disposal at the power plant.

Sources

Entity Company – Location
Duke Energy - Dan River Steam Station
524 S Edgewood Rd
Eden, NC 27288
Rockingham County
Latitude: 36.489495 Longitude: -79.715427

Determination
Demonstrated on-site damage to groundwater

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants into groundwater

Summary
Voluntary groundwater monitoring at Duke Energy’s Dan River Steam Station’s coal ash ponds has detected levels of chromium, iron, lead, manganese, silver, and sulfate that exceed state groundwater standards and federal Maximum Contaminant Levels (MCLs) and Secondary MCLs (SMCLs). Dan River Steam Station has two unlined coal ash ponds as well as an unlined dry ash landfill. Fifteen years of sporadic voluntary monitoring beginning in November 1993 indicates that there is on-site groundwater contamination that is likely migrating outside of the state-designated “compliance boundary” for Dan River’s CCW impoundments. EPA ranked both wet CCW ponds at Dan River Steam Station as “high hazard” surface impoundments, meaning that their failure will probably cause loss of life (USEPA, 2009).
Test of Proof
Groundwater monitoring found exceedances of groundwater standards, such as North Carolina standards, federal MCLs, and federal SMCLs (Duke Energy and NC DENR, 1993–2009). For example:

- **Chromium** was reported at 0.0611 mg/L in April 2008, over the state groundwater standard of 0.05 mg/L.
- **Iron** exceedances ranged from 0.32 mg/L to 69.73 mg/L between November 1993 and April 2008, the latter being over 232 times the SMCL and state groundwater standard of 0.3 mg/L.
- **Lead** exceedances ranged from 0.01522 mg/L to 0.0392 mg/L between April 1998 and April 2008, the latter being over twice the MCL and state groundwater standard of 0.015 mg/L.
- All recorded **manganese** values exceeded SMCLs and state groundwater standards. Manganese concentrations ranged from 0.32 mg/L to 7.058 mg/L, the latter being over 141 times the SMCL and state groundwater standard of 0.05 mg/L.
- **Silver** was reported at 0.0411 mg/L in April 2008, over twice the state groundwater standard of 0.0175 mg/L.
- **Sulfate** exceedances ranged from 510 mg/L to 560 mg/L between November 1993 and April 1996, more than twice the SMCL and state groundwater standard of 250 mg/L (DENR).

The full extent of the groundwater contamination is unknown. Groundwater testing was only conducted within the boundaries of the CCW impoundment structure because the impoundment extends all the way to the Dan River, making downgradient groundwater monitoring difficult. No off-site monitoring has been conducted.

High levels of iron, lead, and manganese in wells presumed to be “background” indicate possible contamination from the on-site dry coal ash storage facilities and warrant further investigation. Groundwater monitoring has only targeted the wet CCW storage site, ignoring the dry CCW landfill.

Constituents Involved
Chromium, iron, lead, manganese, silver, and sulfate

At Risk Populations
The Dan River Steam Station is located in a fairly densely populated area. Private well data is supposed to be archived at the county level; however, Rockingham had only an incomplete list of registered wells from the 1970s, without the geospatial data necessary to map wells in relation to the Dan River Steam Station. Although not an exhaustive list, the private well data available showed that there are over a dozen private suburban residences within two miles of the CCW impoundments at Dan River. In addition, public well data available through the North Carolina Department of Natural Resources, shows five public drinking water wells within a five-mile radius of Dan River that serve over 60 citizens.
Incident and Date Damage Occurred / Identified
Exceedances of groundwater standards were first documented in November 1993

Regulatory Action
The North Carolina Department of Environment and Natural Resources (DENR) is aware of existing groundwater contamination at levels that exceed state groundwater standards at the Dan River Plant. However, DENR has not required a corrective action plan to restore contaminated groundwater at the Dan River Plant and has no plans to take action to eliminate the source of contamination until it reaches the “compliance boundary.” DENR plans to require groundwater monitoring outside of the compliance boundary upon permit renewal for all coal ash ponds (Henderson, 2010), but this may be difficult in the case of the Dan River Steam Station because its coal ash impoundments abut the Dan River.

Despite evidence of groundwater contamination, DENR has not required Duke Energy to take any remedial action. Under North Carolina law, a company is only required to take cleanup action if contamination is spreading outside of a designated “compliance boundary.” As long as Duke Energy continues to monitor only inside the compliance boundary at the Dan River Plant, they will not produce data sufficient to trigger cleanup.

Wastes Present
Fly ash, bottom ash, boiler slag, and flue gas emission residuals from the Dan River Steam Station (Duke Energy, 2009)
Type(s) of Waste Management Unit
Two unlined wet coal ash impoundments and one unlined dry coal ash landfill

Active or Inactive Waste Management Unit
Two active wet coal ash impoundments and one inactive, capped dry landfill

Hydrogeologic Conditions
The CCW impoundments abut the Dan River, indicating that shallow off-site groundwater contamination may be diluted. Further hydrogeologic information was unavailable.

Additional Narrative
The Dan River Steam Station began operation in 1949. The CCW storage impoundment was originally built in 1956, seven years after the plant began operating. The embankment walls were raised in 1967. In 1977, the embankment walls were raised again, and an interior dike was built to divide the impoundment into the two that exist today. It should be noted that the western dike walls of the primary and secondary ash ponds were constructed on top of existing coal ash deposits. The two impoundments together cover 39 acres, with a total storage capacity of 664 acre feet. The impoundments have been periodically dredged and the dredged ash spoils are stored in an unlined dry ash landfill just north of the ponds. The last dredging occurred in 2007. Another dredging is unlikely because the plant is expected to be decommissioned soon.

Source(s)

NCREDC. North Carolina Rural Economic Development Center (NCREDC), NC Center for Geographic Information & Analysis, Raleigh, NC, 20000320, onemap_prod.SDEADMIN.wwells.

Entity/Company – Location
Basin Electric Power Cooperative - Antelope Valley Station
294 County Rd. 15
Beulah, ND 58523
Mercer County
Latitude: 47.367903 Longitude: -101.837286

Determination
Demonstrated damage to on-site groundwater

Probable Cause
Groundwater contamination from coal combustion waste (CCW) landfill

Summary
A closed, clay-lined CCW landfill used by the Antelope Valley Station has contaminated underlying groundwater with arsenic. Arsenic has increased at three downgradient wells to levels exceeding the federal Maximum Contaminant Level (MCL), up to 0.03 mg/L. These three wells are also among the four highest for boron concentrations.

Test of Proof
Arsenic levels have risen dramatically at three downgradient groundwater monitoring wells (MP-12A, MP-13B, MP-22) at the CCW landfill from 1984 through 2010 (BEPC, 2009). For example, in Well MP-12A,
arsenic rose from generally being below the detection level of 0.005 mg/L between 1985 and 1990, to consistently measuring over the federal MCL of 0.01 mg/L from 2000 to 2009. In Well MP-13B, arsenic levels rose to nearly 0.02 mg/L in 1986, shortly after CCW disposal began, but then dropped below detection levels from 1993 to 1999. Then, in 2000, the arsenic concentration began rising again and peaked at over 0.02 mg/L in 2008 (See Figure 1). Similarly, arsenic in Well MP-22, was consistently below detection limits before 1998 and then rose to between 0.03 and 0.04 mg/L in 2008 (See Figure 2). Well MP-22 also had the highest boron levels on-site at over 1.8 mg/L. When asked for the actual laboratory results of groundwater monitoring at the site, staff at the North Dakota Department of Health could only provide rounded values from sampling events furnished by Basin Electric Power Cooperative in trend graphs, examples of which are provided in Figures 1 and 2 below.

Figure 1. Arsenic and selenium at MP-13B.
Constituents Involved

Arsenic

At Risk Population

According to North Dakota State Water Commission, no private drinking water wells exist within a two-mile radius of the Antelope Valley Station. However, the area surrounding the station is primarily agricultural, and there are privately-owned wells that are all used for irrigation. There are two public water supplies located within a five-mile radius of the plant. The first public well is approximately 2.2 miles northeast of the station, and it serves as both an irrigation and drinking water source for roughly four farms in the area. The second public well is located 4.4 miles southeast of the site, serving a collection of farm houses. Data can be found on North Dakota State Water Commission’s Groundwater Data Query on a county-by-county basis.

Incident and Date Damage Occurred / Identified

Arsenic levels were first measured in on-site groundwater above the federal MCL in 1986.

Regulatory Action

None

Wastes Present

Fly ash, bottom ash, flue gas desulfurization wastes (FGD), and inert construction wastes
Type of Waste Management Unit
The CCW disposal unit is a closed landfill (Solid Waste Permit #SP-02) lined with clay. The CCW landfill was constructed on property that contains a reclaimed coal mine.

Active or Inactive Waste Management Unit
The CCW disposal site has been inactive since 1998 and was previously in operation since at least 1984. It will be in the post-closure monitoring phase through 2015. The Antelope Valley Station also maintains an active coal ash landfill and two ponds used for settling solids out of coal ash sluice water that were not examined in this report.

Hydrogeological Conditions
The major geological feature in the area is the Beulah Trench, a former glacial diversion channel. An aquifer of regional significance, the Antelope Valley Aquifer, is located throughout the length of the Beulah Trench. The trench and aquifer runs adjacent to the site to the west and north of the CCW landfill, and directly below the power plant itself. The Beulah-Zap bed, a lignite formation that is used as a source of groundwater for drinking and livestock, runs beneath the landfill site. The bed slopes down to the west toward the Beulah Trench. Groundwater flow generally follows the bed from the site to the Beulah Trench (BEPC, 1981). Well MP-22 is drilled into the aquifer flowing directly beneath the landfill, the Beulah-Zap bed. The Beulah-Zap bed slopes down into the Beulah Trench, which is the formation that MP-12A and MP-13B are drilled into. Well 22 is screened in the Beulah-Zap Bed while wells 12A and 13B are screened in the Beulah Trench sediments (BEPC, 2009).

Additional Narrative
Groundwater quality at the site is influenced by reclaimed coal mines. The increasing arsenic trends in the three wells indicate that the arsenic is linked to the coal ash disposal. The correlation in MP-22 of the highest arsenic and boron levels at the site also indicate that coal ash is the source of increasing arsenic levels.

Sources

Entity/Company – Location
Basin Electric Power Cooperative - Leland Olds Station
3901 Hwy. 200A
Stanton, ND 58571
Mercer County
Latitude: 47.280028 Longitude: -101.315817

Determination
Demonstrated damage to on-site groundwater

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from CCW ponds into groundwater

Summary
The Basin Electric Power Cooperative’s Leland Olds Station has three active coal ash disposal ponds (Pond 1, Pond 2, and Pond 3) and two decommissioned coal ash ponds that have been closed and capped (Pond 4 and 5). None of the coal ash ponds are lined with synthetic materials, but clay liners have been used under all of the ponds (Holzwarth, 2009). Groundwater monitoring data indicates the decommissioned ash ponds contaminated underlying groundwater with arsenic, lead, boron and selenium. In downgradient monitoring wells, arsenic was measured at 0.0789 mg/L, 7.9 times the federal Maximum Contaminant Level (MCL), in 2009, and lead was measured at 0.0716 mg/L (4.8 times the MCL) in 2006. Boron and selenium have also been found at elevated levels in Leland Olds Station’s on-site groundwater monitoring wells.
Test of Proof
Leland Olds Station disposes of CCW in on-site ponds east of the power plant pursuant to permit SP-038. Pond 1 was first commissioned in 1966, Pond 2 and 3 in 1975, and Pond 4 in 1985. Pond 5 was designated as a special waste disposal site also containing fly ash. Up until 1990, both fly ash and bottom ash were disposed of in the on-site ponds. Pond 4 and Pond 5 were reclaimed between 1992 and 1996. In the process, fly ash was moved from Ponds 1 and 2 into Ponds 4 and 5. Both Ponds 4 and 5 were decommissioned and capped in 1996. Since 1992, all bottom ash is now sluiced to the active ash ponds (1, 2, and 3), and fly ash disposal was moved off-site to the mine spoils of the Glenharold Mine under permit SP-143. The oldest groundwater monitoring data available for review was found in trend graphs of sampling dating to 1991. From 1982 to 1996, Leland Olds Station sampled 11 groundwater monitoring wells, three surface water locations, and CCW leachate from Pond 2 on a quarterly basis. As of 1997, the frequency of sampling was reduced to once per year (BEPC, 2004).

- **Arsenic** exceedances were found in three monitoring wells in 2009: 22-ADB (0.0269 mg/L) about 150 feet downgradient from Pond 5, 22-ABC (highest exceedance at 0.0789 mg/L) about 100 feet downgradient from Pond 2, 3, and 4, and 22-DAA3 (0.0259 mg/L) about 150 feet downgradient from Pond 5. Well 22-ABC has an increasing trend of arsenic concentration between 1982 and 2009. While the plant acknowledges arsenic being present in well 22-ABC, they do not explicitly admit that it is the result of CCW contamination; however, the data indicates that CCW is the source of the arsenic.

- **Boron** exceedances above an unspecified state groundwater standard occurred in five downgradient monitoring wells in 2009: 22-ABC, 22-ABC2, 22-ABC3, 22-BAC1, and 22-BAC2. The highest exceedance was observed in well 22-ABC3 at 2.1 mg/L (BEPC, 2009). Wells ABC, ABC2, and ABC3 all reside in the same area as well 22-ABC. Wells 22-BAC1 and 2 are downgradient from Pond 1.

- **Lead** was measured in 2006 in well 22-DCC at 0.0716 mg/L, 4.7 times higher than the MCL (BEPC, 2009). This well’s location was not delineated on a map.

- **Selenium** was detected in 2004 in all downgradient wells, but not above the MCL of 0.05 mg/L. The highest level of selenium, 0.0244 mg/L was in well 22-DCC. In 2009, selenium was detected again in well 22-DCC and two other downgradient monitoring wells, 22-ABC2 and 22-ABC3 (BEPC, 2009).

SMCL exceedances were also commonplace throughout most groundwater monitoring wells. Increasing trends in sulfates and total dissolved solids are evident in downgradient wells 22-ADB and 22-DAA3 where arsenic concentrations exceeded the MCL in 2009. Well 22-DAA3 also had the highest iron concentrations reaching up to 25.3 mg/L (more than 84 times the SMCL) in 2009 (BEPC, 2009).

No data was available in the files reviewed for the sole “upgradient” well, 22-CDB located adjacent to Pond 4.

Constituents Involved
Arsenic, boron, iron, lead, selenium, sulfates, and total dissolved solids

At Risk Populations
Three municipal drinking water wells lie within 5 miles of Leland Olds Station. In addition, individuals who catch and consume the fish or extract irrigation water from the Missouri River could potentially be at risk, as selenium and lead are bioaccumulative in both aquatic organisms and vegetation, including farm
produce. Data was obtained from North Dakota’s Well and Groundwater Database, which arranges all known and state-registered water wells by county and well use. Data records may be missing or incomplete.

Incident and Date Damage Occurred / Identified

An exceedance of the arsenic MCL was first measured in monitoring well 22-ABC in 1985.

Regulatory Action

No state enforcement actions have been taken.

Wastes Present

Bottom ash, fly ash (including economizer ash, air heater ash, and hopper ash), water treatment wastes, coal slack from runoff pond, boiler blowdown, washdown wastes from conveyor system, and coal slack (a fine gradient waste material from bituminous coal) from a runoff pond

Type(s) of Waste Management Unit

Leland Olds Station holds two permits (SP-038 and SP-143) with the North Dakota Department of Health – Division of Waste Management. SP-038 applies to the CCW disposal on-site to the east of the plant in Ponds 1, 2 and 3. These ponds were designed to receive 2.7 million cubic yards of CCW, with a total permit area of 364.6 acres. Basin Electric Power Cooperative told EPA in 2009 that its coal ash ponds were “not lined with engineered clay or synthetic materials” and that “documentation regarding the design and construction” of the ponds was “unavailable” due to the age of the ponds (Holzwarth, 2009). Permit SP-143 is for off-site disposal of fly ash in the mine spoils of the Glenharold Mine.

Active or Inactive Waste Management Unit

Active and inactive. Ponds 1, 2, and 3 are active, while Ponds 4 and 5 are inactive (fly ash is no longer disposed of in Pond 4 and 5. The ponds were capped with two feet of clay cover and two feet of top cover material in 1996.

Hydrogeologic Conditions

The Leland Olds Station is located on lower terraces of the Missouri River, on its flood plain. The Missouri River flows in a southeasterly direction and is within 250 feet of Pond 3 and decommissioned Pond 5. These terraces consist of mostly silts and clays, which make up the Missouri River alluvium. The Missouri Aquifer underlies the terraces and flood plains of the Missouri River Valley in the area of the Leland Olds Station pond complex. According to the plant’s potentiometric maps, the groundwater exhibits both a northeasterly flow from the plant to the Missouri River, as well as flow going southeast from the CCW disposal site towards the Missouri River. The rate of movement is estimated at 0.9 feet per year (Torgerson, 2010).

Underneath the coal ash ponds, the uppermost clay layer ranges between 0 to 26 feet, with an average of 8 feet in thickness, and it is generally dry. Underneath the clay is a layer composed of silt and sand that contains the groundwater of the Missouri River Aquifer with thickness varying between 2 to 25 feet and averaging 8 to 9 feet thick (BEPC, 2004). In the area of the plant, the Missouri Aquifer is two miles wide (BIE Inc, 1991).

The water within the Missouri Aquifer contains moderate amounts of dissolved mineral constituents, mostly
sodium and bicarbonate. In 1973, background total dissolved solids concentrations ranged between 585 to 1660 mg/L. Alderin Creek, an intermittent stream that drains the disposal sites, discharges into the Missouri River and recharges the Missouri Aquifer. The impact of the disposal sites on the creek could not be assessed as water quality data for the creek were not available.

Source(s)

Tillotson. 2010. E-mail correspondence from Steve, J. Tillotson, Assistant Director, Division of Waste Management, North Dakota Department of Health. (June 30, 2010).

Torgerson. 2010. Phone conversation and e-mail correspondence with Brad J. Torgerson, Environmental Scientist, Division of Waste Management, North Dakota Department of Health (July 20, 2010).
Entity/Company – Location
Nebraska Public Power District - Sheldon Station Coal Ash Pit #3
4500 West Pella Road
Hallam, NE 68368
Lancaster County
Latitude: 40.552055 Longitude: -96.783233

Determination
Demonstrated damage to groundwater moving off-site (at property boundary)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants into groundwater

Summary
Shallow groundwater downgradient of a closed, clay-lined coal ash landfill at the Sheldon Station in Southeast Nebraska has become contaminated with selenium federal Maximum Contaminant Levels (MCLs) and sulfate exceeding federal Secondary Maximum Contaminant Levels (SMCLs). From 2002 onward, the two downgradient monitoring wells for Ash Pit #3 have detected steadily rising levels of selenium (up to 0.073 mg/L) and sulfate (over 350 mg/L). The full extent of the contamination is unknown because these are the only two downgradient wells for the coal ash landfill. In response to the evidence of contamination, the Nebraska Department of Environmental Quality (NDEQ) has extended the post closure ground water monitoring period by 5 years and requested that additional ground water monitoring wells be installed.
Test of Proof

Both downgradient monitoring wells have shown increases over time of typical CCW contaminants, such as selenium in MW-3 and sulfates in MW-4 (NPPD, 2009a). In MW-3, selenium concentrations have followed a steadily increasing trend from 2002 to 2009 (See Figure 1). Selenium concentrations in MW-3 have increased from concentrations as low as 0.014 mg/L in 2001 to as high as 0.0728 mg/L in 2006 exceeding the MCL of 0.050 mg/L. Sulfate levels in MW-4 have steadily increased over time, rising from 50 mg/L in 2001 to a high of 381 mg/L in 2007, surpassing the Secondary MCL (SMCL) of 250 mg/L (See Figure 2). Water quality in “upgradient” well MW-1 also appears to be heavily influenced with both chloride and sulfate levels showing steadily increasing patterns in the wells. The Nebraska Public Power District (NPPD) blames this increase on cooling water discharge to a wetlands area upgradient of the well (NPPD, 2009b). However, the closeness of MW-1 to the edge of the landfill where elevated groundwater levels as are result of mounding are likely, means that localized flow of groundwater toward the well from the landfill is a more likely source of the chloride and sulfate. Selenium concentrations in groundwater in the area typically do not exceed 0.01 mg/L, and sulfate levels do not typically exceed 100 mg/L (NDEQ, 2009). Despite the increases of selenium and sulfate in MW-3 and MW-4 located at the northern property line approximately 400 feet beyond the CCW landfill, no off-site monitoring has been conducted to date.

NPPD has argued that the selenium levels detected in MW3 must be from naturally occurring sources since the selenium levels detected in laboratory coal ash leachate tests were an order of magnitude lower than those found in MW3. However, samples from wells drilled in the saturated ash in the CCW landfill found selenium levels ranging from 0.113 to 0.19 mg/L (NPPD, 1999). The pore water wells (wells screened within the CCW itself rather than the underlying aquifer) also had the highest sulfate results of any of the test wells sampled in 1999. These pore water results verify that the coal ash is the probable source of the rising selenium and sulfate in downgradient wells, MW-3 and MW-4.
Constituents Involved
Selenium and sulfate

At Risk Population
One irrigation well is located downgradient of the CCW landfill within one mile of the Sheldon Station Ash Pit #3 (NPPD, 1999). Nebraska’s GW Well Data Retrieval site also indicated one downgradient irrigation well.

Incident and Date Damage Occurred / Identified
Selenium levels in MW-3 first exceeded the federal MCL of 0.05 mg/L in 2004. Sulfate levels in MW-4 first exceeded the federal SMCL of 250 mg/L in 2006.

Regulatory Action
In 2009, the Nebraska Department of Environmental Quality (NDEQ) extended the post closure groundwater monitoring period by 5 years due to evidence of contamination (NDEQ, 2009) and requested that additional groundwater monitoring wells be installed to determine the extent and rate of contamination in the plume moving north. NPPD has agreed to install two additional groundwater monitoring wells (NPPD, 2009b).

Wastes Present
Fly ash and bottom ash

Type of Waste Management Unit
Ash Pit #3 is a clay-lined landfill with a total capacity of 350,000 cubic yards.
Active or Inactive Waste Management Unit

Inactive. In 1999, NPPD stopped placing CCW in Coal Ash Pit #3 after 9 years of disposal at the site (NPPD, 1999). The coal ash pit is currently in the post-closure groundwater monitoring phase. In addition to Coal Ash Pit #3 the plant maintains an active ash landfill, Coal Ash Pit #4. Monitoring data for Coal Ash Pit #4 was not reviewed for this report.

Hydrogeologic Conditions

Coal Ash Pit #3 sits in glacial drift hills in the Salt Creek drainage basin which flows to the Platte River. The upper 100 to 150 feet of the glacial till sediments are designated as a glacial till aquifer and are comprised of a mixture of sand, silt, and clay. Perched water has been encountered on the plant property at depths of 8 to 24 below ground surface in the till. The upper portions of the glacial till aquifer are directly beneath the base of the landfill (NPPD, 1999) with the distance from the base of the ash to the ground water table being less than 25 ft. throughout most of the landfill area. The regional aquifer ranges from 100 to 150 feet below the ground surface at the site comprising deeper depths of the glacial till aquifer.

Additional Narrative

The Nebraska Public Power District's (NPPD) Sheldon Station is located in southeast Nebraska and has a capacity of 229 MW.

Sources

NPPD. 2009b. Request to Terminate Post Closure Monitoring.

NPPD. 1999. Hydrogeological Characterization and Appendices.
Entity/Company – Location
AES - Cayuga Coal Ash Disposal Landfill
228 Cayuga Drive
Lansing, NY 14882
Tompkins County
Latitude: 42.601778 Longitude: 76.634639

Determination
Demonstrated damage to groundwater on-site and a former private residential well (now owned by AES)

Probable Cause(s)
Contaminated leachate and runoff from a coal combustion waste (CCW) landfill discharged directly from a pond into Cayuga Lake and contaminated groundwater from a partially unlined CCW landfill.

Summary
Groundwater monitoring data shows that the partially-lined coal ash landfill at the Cayuga Plant has contaminated underlying groundwater with selenium up to 1.5 times the federal Maximum Contaminant Level (MCL) and 7.6 times the New York State Groundwater Standard (NYGWS); cadmium up to 8 times the MCL; and arsenic at up to 10 times the MCL and NYGWS. Manganese, aluminum, sulfate, and total dissolved solids also exceed federal Secondary MCLs (SMCLs) at the majority of AES Cayuga’s downgradient wells, and also at some of the wells labeled “upgradient.” Data from AES also shows that discharges to Cayuga Lake from the CCW leachate pond, which collects leachate from the CCW landfill grossly exceed federal water quality criteria for selenium (up to 55 times higher than the chronic toxicity standard for aquatic life), arsenic (up to 4,778 times higher than the standard for protection of human health from surface water ingestion and fish consumption), and cadmium (up to 26 times higher than the acute toxicity standard for aquatic life). Yet the State Pollutant Discharge Elimination System (SPDES) permit that regulates this discharge has no limits for many of these parameters, nor is the New York Department of Environmental Protection monitoring surface water in Cayuga Lake near this discharge. AES Cayuga purchased a former residential well, located downgradient, southwest of the landfill, and evidence of CCW metals can be seen in this well.
Test of Proof
The Cayuga Ash Disposal Landfill consists of two sections, a pre-1984 section (Phase I), which is now closed, and the active section (Phase II), which is currently receiving CCW. Phase I is unlined, but a series of pipes were installed below the Phase I landfill to collect CCW leachate. Phase II has a composite liner of soil and a synthetic liner with leachate collection and leak detection systems.

CCW Leachate Collection System
AES Cayuga collects CCW leachate and surface water runoff from the CCW landfill in a pond, and once the pond fills to capacity, AES drains the pond directly into Cayuga Lake. For example, AES's CCW leachate pond discharged over 3.8 million gallons into Cayuga Lake in March 2008, and its “batch discharges” of CCW leachate and landfill runoff totaled over 19 million gallons in 2008 (AMEC, 2009). The CCW Leachate Pond discharge via Outfall 013 is monitored according to SPDES permit NY-000-1333. Samples of CCW Leachate show that the CCW Leachate, prior to discharge from the CCW leachate pond contains levels of aluminum, arsenic, boron, cadmium, manganese, selenium, sulfate, and TDS that exceed federal and/or State groundwater standards. However, in the chart below, concentrations of these constituents are compared to EPA National Recommended Water Quality Criteria, since CCW leachate is discharged to Cayuga Lake.

For brevity, only selenium, cadmium, arsenic, and boron concentrations are provided from CCW Leachate Quarterly Monitoring Reports below for 2007 to 2008. The CCW leachate samples taken at AES Cayuga routinely exceeded federal and/or State standards over a longer period of time, and for more pollutants than summarized here.

<table>
<thead>
<tr>
<th>Year</th>
<th># Exceedances</th>
<th>EPA Health Standards & Water Quality Criteria (mg/L)</th>
<th>Quarter / Well / Maximum Value (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>14</td>
<td>Selenium Chronic (0.005)</td>
<td>May 2008, MAPXUDXX05: 0.273</td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
<td>Selenium Chronic (0.005)</td>
<td>May 2007, MAPXUDXX05: 0.231</td>
</tr>
<tr>
<td>2008</td>
<td>8</td>
<td>Cadmium Acute (0.002)</td>
<td>Nov. 2008, MAPXUDXX01: 0.0357</td>
</tr>
<tr>
<td>2007</td>
<td>9</td>
<td>Cadmium Acute (0.002)</td>
<td>Nov. 2007, MAPXUDXX01: 0.0520</td>
</tr>
<tr>
<td>2008</td>
<td>10</td>
<td>Arsenic Human Health (0.000018)</td>
<td>Aug. 2008, MAPXUDXX04: 0.049</td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>Arsenic Human Health (0.000018)</td>
<td>Nov. 2007, MAPXUDXX04: 0.086</td>
</tr>
<tr>
<td>2008</td>
<td>14</td>
<td>Boron Lifetime Health Advisory Level (6)</td>
<td>Nov. 2008, MAPXUDXX05: 67.4</td>
</tr>
<tr>
<td>2007</td>
<td>15</td>
<td>Boron Lifetime Health Advisory Level (6)</td>
<td>Aug. 2007, MAPXUDXX04: 75.1</td>
</tr>
</tbody>
</table>

NOTE: MAPXUDXX01 collects CCW leachate from the original 1977 ash disposal site and 1978 expansion; MAPXUDXX02 collects CCW leachate from the 1979 and 1982 expansions; MAPXUDXX04 collects CCW leachate from the 1990 expansion; and MAPXUDXX05 collects CCW leachate from the 1984 and 1986 expansions.

Groundwater Suppression System
The groundwater suppression system at AES Cayuga's CCW landfill is comprised of a series of pipes installed underneath several portions of the landfill prior to CCW disposal. Samples from this water system are taken from an area where the pipes enter a manhole. This water also drains to the CCW leachate pond before it drains to Cayuga Lake. As noted above, the discharge via Outfall 013 is monitored according to SPDES permit NY-000-1333. According to AES’ monitoring reports, water sampled prior to discharge from the groundwater suppression system often contains levels of aluminum, arsenic, boron, cadmium, manganese, sulfate, total dissolved solids, and selenium above federal and/or State groundwater standards (AMEC 2008, 2009). In the table below, EPA National Recommended Water Quality Criteria are compared to pollutant concentrations in the groundwater suppression system as this water is discharged to Cayuga Lake via the CCW leachate pond (Gruppe, 2010). For brevity, only exceedances of selected pollutants from Groundwater Suppression System Quarterly Reports over a two-year period are summarized below. A greater number of pollutants over a greater
period of time have been present in the groundwater suppression water exceeding federal and/or State water protection standards.

AES Cayuga – Coal Ash Disposal Site Groundwater Suppression System

<table>
<thead>
<tr>
<th>Year</th>
<th># Exceedances</th>
<th>EPA Health Standards & Water Quality Criteria (mg/L)</th>
<th>Quarter / Well / Maximum Value (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>7</td>
<td>Selenium Chronic (0.005)</td>
<td>Aug. 2008, MAGXGDXX06: 0.088</td>
</tr>
<tr>
<td>2007</td>
<td>9</td>
<td>Selenium Chronic (0.005)</td>
<td>Aug. 2007, MAGXGDXX07: 0.122</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
<td>Cadmium Acute (0.002)</td>
<td>Aug. 2008, MAGXGDXX04: 0.017</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>Cadmium Acute (0.002)</td>
<td>Nov. 2007, MAGXGDXX04: 0.024</td>
</tr>
<tr>
<td>2008</td>
<td>15</td>
<td>Arsenic Human Health (0.000018)</td>
<td>Feb. 2008, MAGXGDXX06: 0.024</td>
</tr>
<tr>
<td>2007</td>
<td>15</td>
<td>Arsenic Human Health (0.000018)</td>
<td>Feb. 2007, MAGXGDXX07: 0.019</td>
</tr>
</tbody>
</table>

NOTE: MAGXGDXX04 drains the area beneath the 1979 landfill extension; MAGXGDXX06 drains the area west of the 1979 extension, along the main haul road; MAGXGDXX07 drains the area beneath the 1984 extension and northern edge of the 1982 extension; MAGXGDXX09 drains the area beneath the 1986 extension.

Groundwater Monitoring Wells

AES Cayuga maintains a network of 35 groundwater monitoring wells at various depths and locations around its CCW landfill. Despite the general groundwater flow towards Cayuga Lake, there are several wells labeled “upgradient” that appear to be influenced by the CCW landfill. Available information suggests that at least five wells designated as upgradient have been contaminated by arsenic and, to a lesser extent, selenium, from the CCW landfill. The lines of evidence supporting this conclusion include:

- The land use upgradient from the landfill is agricultural and unlikely to be contributing arsenic to the monitoring wells. An assessment by USGS of naturally occurring and anthropogenic arsenic in groundwater did not identify any locations in state of New York with naturally high background levels or areas with arsenic in groundwater associated with the use, production, or disposal of arsenical pesticides (Welch et al. 2000).
- Localized groundwater flow in a direction upgradient from the normal flow direction is common in the vicinity of CCW landfills as a result of groundwater mounding within the disposal area. The higher groundwater elevation in the landfill allows contaminants to flow into wells that would normally be upgradient and thus can be contaminated by waste leachate despite their designation as upgradient (see, for example, the Iowa Neal North site in this report).
- The location of these “upgradient” monitoring wells are either adjacent to, or within 150 feet of, the edge of the landfill (most are within 50 feet of the landfill) and likely influenced by groundwater flow direction reversals related to mounding. NY State Regulators have questioned whether some wells, such as MAGUXX-7712, are truly “upgradient” from the landfill (AMEC 2008).
- A review of site maps for the landfill indicates that there are no monitoring wells or piezometers within the landfill that might reflect mounding, so potentiometric maps drawn from existing monitoring wells, which are used to define the direction of groundwater flow, may not be accurate.

In addition to downgradient monitoring wells, the table below shows that five “upgradient” wells have levels of contaminants that exceed federal and/or State groundwater standards for the same contaminants, particularly selenium and arsenic, that are elevated in the CCW leachate and in the water from the groundwater suppression system. Although not included on this chart for the sake of brevity, manganese, aluminum, sulfate, and total dissolved solids also exceed federal SMCLs at the majority of AES Cayuga’s downgradient wells, and also at some of the wells labeled “upgradient.”
<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Parameter / Standard (∑mg/L)</th>
<th>"Upgradient" Wells (mg/L)</th>
<th>Downgradient Wells (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 2007</td>
<td>Arsenic (0.01)</td>
<td>MAGUKXX-7712: 0.010</td>
<td>MAGDXX-7721: 0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGUKXX-8303: 0.012</td>
<td>MAGDXX-8106: 0.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGUD-9001: 0.013</td>
<td>MAGDXX-8302: 0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGUD-8714: 0.033</td>
<td>MAGDD-8702: 0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGDD-8703: 0.013</td>
<td>MAGDI-8703: 0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGDD-9114: 0.011</td>
<td>MAGGSH-8707: 0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGDI-8715: 0.010</td>
<td>MAGDI-8705: 0.017</td>
</tr>
<tr>
<td>May 2007</td>
<td>Arsenic (0.01)</td>
<td>MAGDXX-7731: 0.010</td>
<td>MAGDXX-8707: 0.013</td>
</tr>
<tr>
<td>Aug. 2007</td>
<td>Arsenic (0.01)</td>
<td>ND</td>
<td>MAGDXX-9114: 0.014</td>
</tr>
<tr>
<td>Nov. 2007</td>
<td>Arsenic (0.01)</td>
<td>MAGDXX-8106: 0.036</td>
<td>MAGDXX-8305: 0.0105</td>
</tr>
<tr>
<td>Feb. 2007</td>
<td>Selenium (0.05) NY Standard (0.01)</td>
<td>MAGDXX-8106: 0.053</td>
<td>MAGDXX-8301: 0.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGDXX-8305: 0.005</td>
<td>MAGDD-8715: 0.013</td>
</tr>
<tr>
<td>May 2007</td>
<td>Selenium (0.05) NY Standard (0.01)</td>
<td>MAGDXX-8106: 0.058</td>
<td>MAGDXX-8301: 0.013</td>
</tr>
<tr>
<td>Aug. 2007</td>
<td>Selenium (0.05) NY Standard (0.01)</td>
<td>MAGDXX-8106: 0.055</td>
<td>MAGDXX-8305: 0.024</td>
</tr>
<tr>
<td>Nov. 2007</td>
<td>Selenium (0.05) NY Standard (0.01)</td>
<td>MAGDXX-8106: 0.055</td>
<td>MAGDXX-8306: 0.011</td>
</tr>
<tr>
<td>Feb. 2007</td>
<td>Selenium (0.05) NY Standard (0.01)</td>
<td>MAGDXX-8106: 0.053</td>
<td>MAGDXX-8213: 0.011</td>
</tr>
<tr>
<td>May 2007</td>
<td>Selenium (0.05) NY Standard (0.01)</td>
<td>MAGDXX-8106: 0.055</td>
<td>MAGDXX-8301: 0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAGDD-8703: 0.011</td>
<td>MAGDD-8705: 0.017</td>
</tr>
</tbody>
</table>
Constituents Involved

Arsenic, boron, cadmium, selenium, lead, total dissolved solids, aluminum, manganese, sulfate

At Risk Population

There are homes and farms near the AES Ash Disposal Facility, several within 0.03 – 0.1 miles from the coal ash landfill property boundary to the east of AES Cayuga’s “upgradient” wells (that contain elevated levels of arsenic and selenium). Many of the homes near the AES site draw water from wells, and nearby homes have drinking water wells drilled 60-125 feet deep.

There are also homes downgradient of the coal ash landfill, south of the AES Cayuga plant, along the banks of Cayuga Lake. Some of these homes may share the drinking water line that AES Cayuga brought in for its Plant employees, and some may draw drinking water from wells. Cayuga Lake is directly downgradient from the CCW landfill. Groundwater flows from under the CCW landfill and leachate pond toward the lake, and the contents of AES’s CCW leachate collection pond discharge directly into the lake without treatment. No surface water sampling data from Cayuga Lake is available. As one of the famed “Finger Lakes,” Cayuga Lake is a major destination for fishing and other water-related recreation.

AES purchased one residential well downgradient of its CCW landfill, well MAGDWS-XXO1. This former private well has levels of arsenic close to federal MCLs, for example, the federal MCL is 0.010 mg/L and the residential well tested at .0097 mg/L in May 2008. The former residential well also routinely exceeds federal and/or State groundwater standards for iron (3.79 mg/L); lead (0.027 mg/L), manganese (0.103 mg/L), total dissolved solids (687 mg/L), and zinc (11.9 mg/L). For example, in May 2008, the former residential well was at the New York State limit for selenium of 10 µg/L.

Incident and Date Damage Occurred / Identified

Documentation of damage has occurred since the 2000s

Regulatory Action

On February 2, 2009, the Cayuga facility received a Notice of Violation from the New York State Department of Conservation that the facility had exceeded the permitted volume limit of the coal ash that can be disposed of in the landfill (AES 2009). As of February 26, 2010, discussions between the State and AES Cayuga were ongoing (AES 2009, Gruppe 2010).

Despite the facts of the acquisition of a nearby residential well, the contamination of monitoring wells with metals above federal MCLs as well as some state standards, and the discharges from the CCW leachate pond that are concentrated with metals, there is no evidence that the State has undertaken testing of nearby residential wells or has sampled Cayuga Lake for impacts from the CCW leachate pond. It has taken no enforcement action over water pollution at this site or required AES Cayuga to take corrective actions, limit its discharge to Cayuga Lake, or determine the full impacts of its CCW disposal on the nearby community, lake or groundwater quality.
Wastes Present
CCW (including fly ash, FGD byproducts, pyrites and other wastes) from AES Cayuga Plant and fly ash from a Cornell University heating plant

Type(s) of Waste Management Unit
Unlined CCW leachate pond that discharges directly to Cayuga Lake; 50-acre CCW landfill that is partially lined

Active or Inactive Waste Management Unit(s)
Active

Hydrogeologic Conditions
May 2008 water levels in shallow and deep wells in the vicinity of the landfill show up to a 4.6 foot downward hydraulic gradient that facilitates downward migration of contaminants from the landfill to the bedrock aquifer (AMEC Geomatrix, 2009). The CCW landfill sits up on a plateau, near several farms and homes, above the Cayuga Plant and Cayuga Lake. A March 2009 Annual Solid Waste Operating Report for AES Cayuga describes the hydrogeologic conditions of the CCW landfill site:

The Site is situated on the down-slope portion of a ridge which is bordered on the west by a deep, glacially gouged valley occupied by Cayuga Lake. The ridge is relatively broad and slopes gently to within approximately one mile of Cayuga Lake, at which point the slope steepens dramatically to the lake edge. The natural topography at the Site ranges from 830 feet amsl to 680 feet amsl. The geology at the Site consists of a thick sequence of shale and siltstone bedrock with thin limestone interbeds from Middle to Late Devonian age overlain by a veneer of unconsolidated glacially-derived sediments. The unconsolidated sediments consist of gravel, sand, silt and clay derived from till. Groundwater flows in both overburden and bedrock. Bedrock groundwater movement is controlled by horizontal fractures along bedding place partings, and vertical fractures characterizing the regional bedrock fracture set. The dominant groundwater flow direction in bedrock and glacial overburden is to the west-southwest toward Cayuga Lake. (AMEC 2009, emphasis added).

Additional Narrative
The AES Cayuga power plant (306 MW) has two coal-fired generating units that were built in 1955. The plant is located on the eastern shore of Cayuga Lake, about 15 miles northwest of Ithaca, New York. In 2008, the Cayuga Plant disposed of 108,330 tons of fly ash, industrial waste, and flue gas desulfurization (FGD) byproducts at its 50-acre landfill located just uphill from the Plant. In addition to its own CCW, AES Cayuga disposes of limited quantities of fly ash from the heating plant at Cornell University.

Sources

AES Cayuga. 2007. AES Cayuga, SPDES Permit Application and Response to Request for Information (Mar. 23, 2007).

Gruppe 2010. Phone conversation with Jim Gruppe of NY DEP regarding groundwater at AES Cayuga site (June 14, 2010).

NYSDEC. 2010. New York State Department of Environmental Conservation (NYSDEC), AES Cayuga SPDES Permit NY 0001333 (effective date: Jan. 1, 2010).
Entity/Company – Location
American Electric Power - Cardinal Fly Ash Reservoir (FAR) 1 and 2,
306 County Road 7 East
Brilliant, OH 43913
Jefferson County
Latitude: 40.2462 Longitude: -80.6526

Determination
Demonstrated damage to groundwater moving off-site (discharging into Riddles Run and Blockhouse Hollow)

Probable Cause(s)
Migration of contaminants from unlined coal combustion waste (CCW) ponds into groundwater

Summary
A CCW landfill and unlined CCW ponds at the American Electric Power (AEP) Cardinal Plant have contaminated underlying groundwater with heavy metals and boron. The AEP site consists of three disposal areas: a closed unlined coal ash pond (called Fly Ash Reservoir or FAR 1); an active unlined coal ash pond (FAR 2); and a flue gas desulfurization landfill constructed on top of the closed ash pond (FAR 1). Statistical analysis of groundwater monitoring at the site indicates that “fly ash related constituents” have entered the groundwater surrounding the two ash impoundments (OH EPA, 2004). Arsenic up to 0.1 mg/L has been detected in monitoring wells, 10 times the EPA Maximum Contaminant Level (MCL). Molybdenum up to 0.43 mg/L, 10 times the EPA Lifetime Health Advisory Level of 0.04 mg/L, has been detected in downgradient wells. Boron levels, up to 5.57 mg/L, also exceed the EPA Child Health Advisory Level in several wells. Four groundwater monitoring wells have been placed under “assessment monitoring” by the Ohio Environmental Protection Agency (OH EPA) due to evidence of CCW contamination (AEP, 2009; OH EPA, 2010).
Test of Proof

AEP’s 2004 Ground Water Assessment Report submitted to OH EPA confirmed the presence of coal ash related constituents in the groundwater surrounding the ponds (impoundments), called “Fly Ash Reservoirs” or “FAR 1” and “2” at this site. FAR 1 and 2 are in direct contact with the Shallow and Morgantown Sandstone Aquifer (OH EPA, 2006). Changes in groundwater levels over time indicate that the coal ash water in these impoundments has become a major source of recharge for the Morgantown Sandstone Aquifer (AEP, 2007). AEP itself admits that the continued inundation of the aquifer by water from FAR 2 will at least in the short-term have “a significant influence on groundwater quality from ash pond recharge” (AEP, 2007). Samples from wells drilled into the ash in FAR 1 show that the water in the ash impoundments contains high levels of arsenic (up to 0.466 mg/L), boron (up to 12 mg/L), and molybdenum (up to 1.47 mg/L).

Statistically significant increases were confirmed for a number of constituents in groundwater leaving the impoundments including arsenic (OH EPA, 2004). Arsenic levels in several wells exceed the EPA MCL and were found at concentrations as high as 0.1 mg/L. The well showing the highest arsenic levels (S-2) is designated “upgradient” by the plant’s contractors, but this well consistently has high levels of boron (1.71-5.57 mg/L) and molybdenum (up to 0.024 mg/L versus non-detected concentrations in most upgradient wells). Both parameters are designated ash indicators for the site in the shallow aquifer (AEP, 2009). OH EPA has determined that mounding has occurred in groundwater around the site based on steadily rising head levels in wells around FAR 1 (OH EPA, 2010), which allows groundwater from the disposal area to flow to well S-2, which may have been upgradient before disposal began, but now is contaminated. Other downgradient wells have shown levels of boron (up to 4.55 mg/L) and molybdenum (up to 0.43 mg/L) above EPA Health Advisory Levels.

OH EPA has required no off-site monitoring around the AEP Cardinal Plant despite the fact that the contaminated Morgantown Aquifer is the source for a number of seeps and springs along the sides of Blockhouse Hollow downstream of the dam of FAR 2 and along Riddles Run (AEP, 2009). Despite these seeps downgradient of the ash impoundments, individual sampling of the seeps has not been conducted (OH EPA 2010). Sampling of one spring near the CCW disposal areas is scheduled to begin later this year (AEP, 2009). However, seeps have also begun to appear in the dam of FAR 2 (OH EPA, 2010), which is ranked as a “high hazard” surface impoundment (USEPA, 2009). Any theoretical discharge from the ash impoundments to these seeps is included in the discharge permit for outfall 019 of Cardinal’s NPDES permit (OH EPA, 2010), which discharges into Blockhouse Hollow. Monitoring of this outfall has found high levels of arsenic (up to 0.204 mg/L) and molybdenum (up to 0.284 mg/L) in the discharge although there are no limits for either metal in the NPDES permit. The creek receiving this discharge in Blockhouse Hollow runs directly beside the Tidd-Dale Subdivision but has yet to be sampled (OH EPA, 2010).

Constituents Involved
Arsenic, boron, and molybdenum

At Risk Population
The Tidd-Dale Subdivision, which is approximately 2000 feet from the FAR 2 dam, relies on private drinking water wells. According to the latest potentiometric map of the AEP Cardinal Plant, which indicates the direction of groundwater flow, the Tidd-Dale Subdivision is in the direct path of groundwater flow from FAR 2. At least nine private wells are located in the subdivision. OH EPA has not required any sampling of these wells. (OH EPA, 2010).
Data from Ohio Department of Natural Resources’ (DNR) Groundwater Mapping Query yielded a total of 16 private wells within a two mile radius of the AEP Cardinal site. In addition, there are a total of 5 public drinking water sources within a five mile radius of the site, one of which is located east of the Tidd-Dale Subdivision, less than two miles from the FAR 2 dam. Across state lines in West Virginia, well logs were not comprehensive and had no geospatial data attributed to the well log. Although drinking water well data are often organized at the county level within the Department of Health in West Virginia, there were limited data records for Brooke County. According the West Virginia Department of Environmental Protection (WDEP), private wells are the only source of drinking water in rural Brooke County.

Incident and Date Damage Occurred / Identified
AEP reported statistically significant increases of CCW constituents in groundwater monitoring wells to OH EPA as early 1999 and 2000, with exceedances of MCLs and Health Advisory Levels first detected in 1993.

Regulatory Action
Due to the groundwater contamination reported by AEP, OH EPA placed four wells under “assessment monitoring” (AEP, 2009; OH EPA, 2010). Assessment monitoring is required whenever a groundwater monitoring well shows two consecutive statistical increases in contaminant levels. Under assessment monitoring, AEP is required to determine the extent and rate of groundwater contamination. AEP must then develop a plan of action to address the contamination. AEP’s 2002 Ground Water Monitoring Assessment Report asserted that the groundwater contamination was due to previous mining and other sources of pollution. However, evidence of groundwater contamination was sufficient for OH EPA to request an expansion of the monitoring program in 2004 to determine the full extent of possible contamination (OH EPA, 2004). In 2009, AEP submitted a second Assessment Monitoring Report to OH EPA based on the results of the expanded groundwater monitoring program, which included wells...
downgradient of FAR 2. In addition, AEP is scheduled to install four new wells on the southern edge of FAR 2 in 2010 as part of the second “assessment monitoring” plan and will begin monitoring a seep downstream of the dam to determine the possible flow of CCW contaminants.

Wastes Present
Fly ash, bottom ash, and flue gas desulfurization (FGD) wastes

Type(s) of Waste Management Unit
FAR (Fly Ash Reservoirs) 1 and 2 are unlined coal ash impoundments. A landfill with a synthetic liner was constructed on top of FAR 1 for FGD wastes.

Active or Inactive Waste Management Unit
FAR 1 has been inactive since 2000, when all disposal of sluiced ash was switched to FAR 2. The FGD landfill (built on top of FAR 1) and FAR 2 are still active.

Hydrogeologic Conditions
The AEP facility and CCW disposal sites sit on the edge of bluffs overlooking the Ohio River. An area known as Block House Hollow, which is made up of two stream valleys, was dammed to make the CCW ponds, FAR 1 and 2. Hydrogeological reports conducted at the site identify three aquifers underlying AEP Cardinal’s property: the Shallow Aquifer; the Morgantown Sandstone Aquifer; and the Cow Run Sandstone Aquifer (listed in order of increasing depth). Water from the impoundments comes into direct contact with outcroppings of the Shallow Aquifer and Morgantown Sandstone in the former stream valleys (AEP, 2009). The Shallow Aquifer and Morgantown Sandstone are separated by a layer of shale. The Morgantown and Cow Run Sandstone aquifers are separated by a layer of shale, limestone lenses, and siltstone.

The original direction of flow for the Shallow Aquifer and Morgantown Sandstone generally followed the shape of the topography with the aquifers sloping down along the bluffs and into the stream valleys. However, water from FAR 1 and 2 has inundated the Shallow and Morgantown Sandstone Aquifers and significantly altered groundwater flow patterns around the disposal area (AEP, 2007). Head levels in one groundwater monitoring well rose by 80 feet over a 12-year period. The original direction of flow around FAR 1 was to the south-southwest, but this direction has shifted, as evidenced by changes in head levels and concentrations of ash indicator parameters in groundwater monitoring wells. The new direction of groundwater flow has been difficult to determine due to influence from both FAR 1 and 2 (OH EPA, 2006). Concentrations of ash indicators in wells downgradient of FAR 2 indicate flow south toward the FAR 2 dam and to the south-southeast. Seeps have appeared around the FAR 2 dam as the water level in FAR 2 has increased (OH EPA, 2010).

Additional Narrative
A sad commentary on how lax USEPA has been in investigating potential damage cases, is that both the FGD landfill (called Cardinal PFBC monofill) and FAR 2 (called Cardinal Fly Ash Reservoir II Impoundment) were rejected as damage cases in its damage case assessment report because “The data do not show any exceedances of primary or secondary MCLs” (USEPA, 2007).

Source(s)
OH EPA. 2010. Ohio Environmental Protection Agency, Phone conversation with Jane Jacobs, Geohydrologist, OH EPA (June 9, 2010).

Entity/Company – Location
American Electric Power d/b/a Ohio Power Company – General James M. Gavin Power Plant
7397 State Rte. 7 North
Cheshire, OH 45620
Gallia County
Latitude: 38.9367 Longitude: -82.1158

Determination
Demonstrated damage to groundwater off-site (in monitoring well beyond the southern property line and surface water & aquatic life in Stingy Run and Kyger Creek).

Probable Cause(s)
Leaking of coal combustion waste (CCW) contaminants from the CCW landfill site into groundwater.

Summary
Groundwater monitoring demonstrates that American Electric Power’s (AEP) Gavin CCW landfill and decommissioned fly ash pond have contaminated underlying groundwater with pollutants above federal Maximum Contaminant Levels (MCLs). For example, groundwater contains arsenic up to 0.057 mg/L (5.7 times the federal MCL); barium up to 13,800 mg/L (6.9 times the MCL); cadmium up to 0.007 mg/L (1.4 times the MCL); and lead up to 0.051 mg/L (3.4 times the MCL). In addition, CCW disposal at the Gavin Plant caused widespread major exceedances of the MCL for alpha activity as high as 1,497 pCi/L (99.8 times higher than the MCL) and molybdenum concentrations as high as 0.409 mg/L (more than 10 times the federal Lifetime Health Advisory Level). The contamination appears to be spreading as the number of contaminated groundwater wells has increased over time and includes a monitoring well south of the property line in the direction of contaminant flow. NPDES permit violations for the landfill and a closed fly ash/bottom ash pond have also occurred for copper, boron, and sulfate, and acute toxicity to aquatic life has been observed.
Test of Proof
The Gavin CCW landfill is approximately 255 acres, covers three distinct valleys, and is located 1.25 miles northwest of the Gavin Plant at River Mile 258 on the Ohio River (AEP, 1998). Initially, the valleys were designated as landfill Phase A, Phase B, and Phase C. Landfill Phase A (80 acres) was constructed in 1994, Phase B (50 acres) in 1996, and Phase C (111 acres) in 1998. Each of the three valleys was filled to a total elevation of about 720 feet, and AEP merged the three phases into one CCW landfill area. Phase A was still undergoing the final cover process as of 2009 and Phase B’s final cap was installed in 2003 (AEP, 2005). Phases D and E will be placed on top of the three initial phases until the landfill reaches its final elevation of 900 feet. Phases A, B, and C are full, and current disposal operations are in Phases D and E (AEP, 2009). Three small lined ponds collect leachate from the CCW landfill and are located to the south, east, and northeast of the landfill.

One foot of clay and a 30-mil geosynthetic liner was used in the CCW landfills, however the levels of contamination in groundwater monitoring wells indicates it is ineffective. Fly ash is mixed with the FGD sludge and is then sent by conveyor to the Gavin CCW landfill.

EPA ranked a fly ash pond and a bottom ash pond at Gavin as “high hazard” surface impoundments (USEPA, 2009). The “decommissioned” fly ash pond is located approximately 1500 feet to the northwest of the landfill site and covers 300 acres. It is no longer receiving ash, although AEP is still in the process of deciding how to close the ash pond (OEPA, 2008). Tests run by AEP have determined that the effluent from the fly ash pond has been toxic to aquatic life.

Groundwater
In 2000, rapid loading of CCW in Phase A resulted in a rise in groundwater levels at the toe of the disposal area. The loading appears to have increased pore pressures in the foundation soils as the waste materials consolidated forcing groundwater out. Such increase in pore pressure may result in slope stability problems for the landfill. In response, the plant disposed ash in both Phase B and C, while avoiding filling near the toe of Phase C due to the same concerns associated with slope stability.

Exceedances of MCLs have been observed in on-site groundwater monitoring wells downgradient of landfill Phases A and C in addition to wells upgradient of the landfill. The highest alpha activity (1497 pCi/L) was observed in 2007 in Well 9801 downgradient from Phase C of the landfill monitoring the uppermost Shales/Cow Run Sandstone aquifer. In the same well in 2008, cadmium was measured at 0.007 mg/L (1.4 times the MCL) and lead at 0.051 mg/L (3.4 times the MCL) (AEP, 2009).

The characterization of Wells 94126 and 94128 as “upgradient” wells is questionable. The highest barium concentration measured at the site was at Well 94126 at 13.8 mg/L (6.9 times the MCL), and barium levels have been increasing at this well for a long time. High alpha activity has been measured at the well (137 pCi/L in 1994, 9.1 times the MCL). However the water level of Well 94126 was almost 30 feet lower than the water elevation of the center of the landfill (AEP, 2009). The higher water level in the landfill compared to this well within 200 feet of the landfill suggests contaminants would flow from the landfill to the well. In addition, Wells 94126 and 94128 are nested in the same location in a valley at a surface elevation that is 150–200 feet downhill from the 300 acre decommissioned ash pond, which still contains large areas of open water. Well 94128 is screened in the shallow Morgantown Sandstone aquifer directly underneath unconsolidated alluvium and Well 94126 is screened below the Morgantown Sandstone in the uppermost portion of Cow Run Sandstone aquifer.
Molybdenum was observed in five on-site monitoring wells with its highest levels in Well 94128 at 0.409 mg/L, more than 10 times the federal Life-time Health Advisory, in 2008. Four downgradient wells have also measured high molybdenum. These include concentrations of up to 0.207 mg/L in 2003 and 0.237 mg/L in 2006 in Well 93101 in the Cow Run aquifer, which exceed the Health Advisory by more than 5 times and 0.1 mg/L in 2007 in Well 94140 exceeding the Health Advisory by 2.5 times. Well 94140 is approximately 700 feet south of the landfill and beyond the landfill property line.

Monitoring between 1994 and 2008 revealed arsenic exceedances in seven wells. The highest arsenic measured was 0.057 mg/L in 1996 in Well 94128. The second highest was 0.053 mg/L in 1998 in Well 94128.

Statistical increases for several contaminants have also been observed. Since 1998, sulfate increases have been observed in Well 94140 downgradient from Phase A of the landfill (AEP, 1998; 2009b). Barium concentrations have also increased since the beginning of Well 94126’s monitoring history with 3.4 mg/L measured in 1994, an average of 7.9 mg/L measured between 1994 and 2009, and a maximum of 13.8 mg/L measured in 2003 in this well (AEP, 2009b).

There is also evidence of contaminants migrating from the landfill site. In 1994, seven downgradient and two upgradient wells showed alpha contamination ranging from 15 to 137 pCi/L. By 2009, 15 of 31 wells had shown consistent alpha activity exceedances between 1994 and 2009 (AEP, 2009b). In addition to molybdenum above the federal Health Advisory, manganese was found at 0.089 mg/L, nearly twice the SMCL (0.050 mg/L), TDS at 1,500 mg/L, three times the SMCL (500 mg/L) and chloride at 450 mg/L, exceeding the SMCL (250 mg/L), at Well 94140 south of the property line in 1996-1998 (AEP, 2009e).

2) Surface Water:
NPDES permit violations also exist for the Gavin CCW landfill site. In April 2009, an exceedance of the daily maximum concentration for boron was reported from Outfall 007 with a measured discharge of 8.860 mg/L compared to a permit limit of 8.551 mg/L. This outfall discharges from landfill Phase A. In July 2009, two exceedances of the daily maximum concentration for boron were also reported at Outfall 007 with measured discharges of 9.470 mg/L and 8.900 mg/L.

The Gavin Plant also conducts effluent toxicity monitoring by measuring acute toxicity units (TUa) and lethal concentrations (LC50) for its outfalls discharging into Kyger Creek and the Ohio River, pursuant to Part 1(C)(2)(D) of the plant’s NPDES permit (AEP, 2005). A toxicity unit (TU) is a unit of measure for effluent toxicity. Toxicity units increase as the toxicity of the effluent increases (i.e., a TU of 4.00 is twice as toxic as a TU of 2.00). Acute toxicity units (TUa) describe the toxicity resulting from an exposure that occurs only once. Lethal concentration (LC50) is a calculated percentage of effluent at which 50 percent of test organisms die in a 24-hour test period. Measurements of these toxicity characteristics are taken from the outfall, the mixing zone, and upstream.

Outfall 001 discharges from the decommissioned fly ash pond into Stingy Run which flows into Kyger Creek, a tributary to the Ohio River. The allowable effluent toxicity (AET) for Outfall 001 from the decommissioned ash pond is 0.3 TUa, and it applies to both the effluent at the discharge and in the mixing zone (OEPA, 2008b).

In March 2008, Outfall 001 had test results that were acutely toxic to the Ceriodaphnia dubia (C. dubia), an aquatic insect, but not toxic to fathead minnow. The TUa values for samples taken from Outfall 001’s effluent and the mixing zone were 3.3 and 1.9 respectively (11 and 6.3 times the AET limit). Water samples were...
taken from upstream (in Kyger Creek upstream of its confluence with Stingy Run), at the outfall and in the mixing zone. Mortality to C. dubia was significant in the samples taken from the outfall at 85%, and mixing zone at 70%. Upstream Kyger Creek water was not acutely toxic (less than 25% mortality) to C. dubia (AEP, 2008b). Total effluent concentrations of aluminum, nickel, and zinc were 3.26 mg/L, 0.070 mg/L and 0.158 mg/L, respectively (AEP, 2009). In comparison to the EPA National Recommended Water Quality Standards, the aluminum concentration was 4.3 times higher than the criteria maximum concentration (CMC) for acute exposure, nickel was 1.3 times higher than the criterion continuous concentration (CCC) for chronic exposure, and zinc was 1.3 times higher than CMC for acute exposure (the nickel and zinc criterion assume a water hardness of 100 mg/L, EPA WQS).

In June 2008, Outfall 001 effluent was found to be acutely toxic to C. dubia. Fifty percent of the test population died (LC50 value) when exposed to water containing 43.8% ash effluent, resulting in a TUa of 2.3 (7.67 times the AET limit). At full-strength effluent, 100% mortality was observed in the outfall sample and 50% mortality was observed in the mixing zone sample, while upstream water from Kyger Creek was not toxic to C. dubia. An effluent nickel concentration of 0.065 mg/L, 1.2 times higher than the CCC for chronic exposure, and a zinc concentration of 0.13 mg/L, 1.1 times higher than the CMC for acute exposure, are suspected of causing the toxicity by AEP (AEP, 2008).

Discharge from Outfall 008 flows from the landfill’s leachate collection ponds into Kyger Creek, and the subsequent receiving stream is the Ohio River. The AET for Outfall 008 is 1.0 TUa (OEPA, 2008). Tests were conducted in August 2008 at Outfall 008. Results showed 100% mortality in full-strength effluent samples for both C. dubia and fathead minnow. Fifty percent mortality was observed in the mixing zone sample to C. dubia and 15% mortality to fathead minnow. The calculated TUa values were 3.4 for full strength effluent and 2.8 in the mixing zone (3.4 and 2.8 times the AET limit).

At Outfall 008, 50% of the C. dubia also died when exposed to water containing 29.7% effluent, and 50% of fathead minnows died when exposed to water containing 35.3% effluent (LC50 concentrations). AEP claims that toxicity came from low pH (6.60, which is in the acceptable EPA range) and high TDS (3910 mg/L) levels (AEP, 2009).

Constituents Involved

Alpha activity, arsenic, barium, cadmium, lead, molybdenum, sulfate, and total dissolved solids in groundwater; aluminum, copper, nickel, and zinc in surface water discharges

At Risk Population

Sixty-three wells used for public or private drinking water were found within a 1.5 mile radius of the fly ash pond. Neither AEP nor the Ohio Department of Natural Resources describe whether the wells are used for municipal or private water supplies. In addition to concerns about groundwater in the area being used as drinking water, human exposure to contaminants may occur if fish caught in Stingy Run, Kyger Creek, or the Ohio River downstream from the landfill site are consumed.
Incident and Date Damage Occurred / Identified
1994: First exceedances of alpha activity and barium are identified
1995: First exceedances of arsenic and lead are identified
1997: First exceedance of molybdenum is identified
2008: First exceedance of cadmium of identified.
2009: Ponding and erosion was located in the Phase D area of the landfill (GCGHD, 2009).

Regulatory Action
OH EPA has not taken enforcement action to stop contamination at the Gavin CCW landfill and, instead, has ordered AEP to conduct “assessment monitoring” at four groundwater monitoring wells, a few more than once. These have included Well 9801 in 2005 and 2009, Well 9803 in 2004 and 2009, Well 94140 in 1997, 2000, and 2008 and Well 9806 in 2005 (AEP, 2009). Under the requirements of OAC 3745-30-08 (AEP, 2009), “assessment monitoring” is required whenever a well shows two consecutive statistical increases in contaminant levels. Under assessment monitoring, AEP is required to determine the extent and rate of contamination. The facility must then develop a plan of action from this information to address the contamination. However, AEP claims that its assessment monitoring has produced false statistical positives, suggesting that no increases above background levels of waste-derived contaminants have occurred at any monitoring well downgradient of the CCW landfill. This claim enabled AEP to return to a less stringent groundwater monitoring program for the site per OAC 3745-30-08(D)(13).
The OH EPA’s response to the boron NPDES exceedances in 2009 was to notify AEP that the allowable daily maximum concentration of boron would be increased in 2009 and thus such boron concentrations would no longer exceed the permit limit (OEPA, 2008).

Wastes Present
Fly ash, bottom ash, filter cake, lime, flue gas desulfurization (FGD) waste

Type(s) of Waste Management Unit
A CCW landfill and a fly ash and bottom ash pond (AEP, 2009d). Both ponds are lined (AEP, 2002).

Active or Inactive Waste Management Unit
Active and inactive units: *Active* units are Phases D, E, and F of the landfill and the bottom ash pond (receives a variable rate of bottom ash and some is removed periodically for beneficial reuse); *Inactive* units are Phases A, B, C of the landfill and the fly ash pond.

Hydrogeologic Conditions
AEP has not provided a clear description of the hydrogeologic conditions at Gavin’s CCW landfill. AEP claims that, “the hydrogeology of the disposal site is characterized by a multi-level perched water table bedrock aquifer system” (AEP, 2002). However, the Morgantown Sandstone and Cow Run Sandstone aquifers identified in the permit are regional aquifers that extend over a wide area, reaching out at least to Brilliant, Ohio approximately 120 miles northeast of the Gavin site (AEP, 2007). In descending order, the Connellsville Sandstone forms the first perched water table underlying the landfill and is restricted to the intervening ridges within the landfill’s footprint. A natural geologic barrier composed of the Clarksburg Redbeds and low permeable residual clay plus geologic barrier soils separates the Connellsville Sandstone from the lower Morgantown and Cow Run Sandstone aquifers. As such, the Connellsville Sandstone unit is designated a significant zone of saturation above the uppermost aquifer system. The Morgantown Sandstone lies beneath the alluvial clayey silts in a valley that is identified as being “within Pond 3,” and which is downgradient of the landfill and to the northeast of Phase C of the landfill. The Morgantown Sandstone overlies the Cow Run Sandstone (AEP, 2002).

The Cow Run Sandstone has been designated as the uppermost aquifer that is most monitored because it is continuous beneath the entire site, even though in reality it is lower than the other relevant aquifers on-site (AEP, 2002). The Morgantown Sandstone is also identified as part of the uppermost aquifer system. Both of these sandstone members also include zones of sandy shale strata. The alluvium is located above these sandstones and composed of “predominantly silty clay” (AEP, 2002). The alluvium is screened by monitoring Well 9803 towards the base in “a brown clayey sand and gravel” (AEP, 2002). Potentiometric data indicates a downward flow from the alluvium into the underlying bedrock (AEP, 2002).

According to AEP, groundwater flow changes depending on which valley of the landfill it flows through (AEP, 2002). One direction of groundwater is in a northeasterly direction through and under Phases C and D of the landfill. Another direction of groundwater flow is curving southeast at first, but then reorienting to a western direction under and through landfill Phases B and E. A third direction of groundwater flow is toward the south through Phase A. No information on the rate of groundwater flow is currently available. Phase A discharges into leachate Pond 1 to the south. Leachate from Phases B and E flows into Pond 2 to the east of the landfill. Phase C and D’s leachate flows into Pond 3 to the northeast of the landfill (AEP, 2009). Notable impacts were not observed in groundwater around these ponds in the data examined in this report.
Additional Narrative
Effluent Limits Fail to Protect Kyger Creek and its Tributaries

Usually, the effluent limits for a discharge to a low-flow stream are lower than those for a larger river because the latter has much greater water volume that dilutes the discharge, allowing for a greater concentration of the pollutant in the discharge before any water quality criteria is violated in the receiving water. However, the water quality criteria for Kyger Creek and its tributaries are much less stringent than that of the Ohio River.

For example, the Ohio River’s state water quality standards for lead is set at 150 µg/L as a “Maximum for Aquatic Life” and 310 µg/L for the “Inside Mixing Zone Maximum” set by the OH EPA. A mixing zone is a discreet volume of water in the receiving water in which the more stringent chronic water quality standards typically do not apply. In comparison to the Ohio River, OH EPA has set water quality criteria for Kyger Creek that allow a maximum lead level in Kyger Creek for aquatic life protection of 710 µg/L and lead levels as high as 1400 µg/L in mixing zones in the creek. Similarly, the allowable limits for cadmium, nickel, selenium, silver, beryllium, chromium, di-n-butyl phthalate, and zinc are all much higher for Kyger Creek than the Ohio River. In other words, the water quality standards set for Kyger Creek allow for substantial surface water pollution to occur from the Gavin site.

Source(s)
AEP. 2009a. American Electric Power (AEP), Acute Toxicity Test Results, Ohio Permit No. 01B00006*JD (2009).

AEP. 2008b. AEP, Acute Toxicity Test Results, Ohio Permit No. 01B00006*JD (2008).

Saines. 2010. Phone Conversation with Steve Saines, Groundwater General Contact, Ohio Environmental Protection Agency (June 16, 2010).

Entity/Company – Location
Hyman Budoff / Merle & Charles Kittinger – Industrial Excess Landfill (IEL) Superfund Site
12464 Cleveland Avenue
Uniontown, OH 44685
Stark County
Latitude: 40.968689 Longitude: -81.405153

Determination
Demonstrated damage to off-site groundwater, including damage to many domestic drinking water wells

Probable Cause(s)
Coal combustion waste (CCW) is the likely source of metals contamination at levels above MCLs in numerous wells. CCW may also contribute to measured levels of alpha and beta radioactivity in more than a dozen wells.

Summary
The Industrial Excess Landfill (IEL), designated by the U.S. Environmental Protection Agency (USEPA) as a Superfund Site in 1984, received an estimated 1 million tons of coal ash from industrial boilers in the Akron/Canton area in the 1960s. In the 1970s, IEL received 1 million tons of industrial organic liquids and other wastes. Although the landfill contains a mixture of industrial wastes, only coal ash contains the toxic heavy metals found in on-site and off-site groundwater wells.

Locations of MW14 (within landfill) and off-site monitoring wells are approximate.
IEL is located in a former sand and gravel pit with residential areas to the north, west and south where hundreds of people depended upon private wells for drinking water. Widespread, significant exceedances of maximum contaminant levels (MCLs) for drinking water and other health-based standards for metals were found in monitoring well clusters located in or close to residential areas. Metals where drinking water standards have been exceeded (maximum exceedances in parentheses) include: antimony (52 times the federal standard), arsenic (13 times the federal standard), beryllium (30 times the federal standard), cadmium (53 times the federal standard), chromium (17 times the federal standard), lead (47 times USEPA’s action level), thallium (6.5 times the federal standard), and nickel (12.4 times USEPA’s former MCL). Radionuclides probably associated with the coal ash (radon), and anthropogenic radioisotopes where coal ash-colloids probably facilitated off-site transport (plutonium and technetium-99) have also migrated into the residential areas to the north, west, and south.

In 1987, USEPA, in response to the groundwater contamination, required 100 homes west of the site to be provided with free hook-ups to public water. Contamination by coal ash contaminants, however, was also detected to the north and south of the landfill. Thus, while the Agency has determined that the Superfund remedy is “complete,” harm to residents who live in the vicinity of the site continues. Many residents in these areas cannot afford the $5,000 hookup fee and continue to use private wells. The neighborhoods southwest, west, and northeast of the landfill have had high incidences of cancer since at least the early 1990s.

Test of Proof

The Industrial Excess Landfill (IEL), located in Lake Township southeast of Uniontown, Ohio, covers about 30 acres and averages 45 feet in height. Prior to 1959, the property was mined for sand and gravel. From 1959 until the mid-1960s, materials approved by the Ohio Department of Health for inclusion in the landfill included coal fly ash, masonry rubble, paper, scrap lumber, and other non-toxic materials (Jackson et al. 1989). In the mid-1960s, coal fly ash was the primary waste placed at the landfill. The northwest and northcentral portions of IEL were lined with fly ash (ATDSR, 1998). Approximately one-third of the IEL landfill is filled with coal ash from industrial boilers in the Akron/Canton area (Weatherington-Rice and Aller, 2005). This represents an estimated 450-acre feet of coal ash totaling approximately 1 million tons. Starting in the late 1960s and through the 1970s, about 1 million gallons of industrial liquid wastes were dumped onto the ground and into an evaporation lagoon constructed on-site. In addition to industrial wastes, the landfill also accepted waste from hospitals, septic tank cleaning firms, and the general public. In response to increasing complaints by nearby residents, the Stark County Board of Health ordered IEL to stop dumping chemical wastes in 1972, but other waste disposal continued until the landfill ceased operations in 1980, and was covered with soil consisting of highly permeable sand and gravel (USEPA, 2009). The landfill was listed on the USEPA’s National Priorities List (NPL) as a Superfund site in 1986, and USEPA claims that remedial action was completed in 2005 (see Regulatory Action section).

USEPA’s remedial actions at the IEL landfill have focused almost exclusively on contamination by volatile organic chemicals (VOCs), and no mention is made in documents posted on USEPA Region 5’s website that CCW was a significant source of groundwater contamination by metals at the site (USEPA Region 5, 2010). The evidence, however, supports the conclusion that coal ash at the IEL site is either exclusively or the predominant source of the extensive metals contamination documented at the site:

- All the metals found to exceed MCLs in off-site wells (antimony, arsenic, beryllium, cadmium, chromium, lead, nickel, and thallium) are present in Ohio coals. For example, concentrations of thallium, an extremely uncommon element for manufacturing, have been measured in coal ash with maximum concentrations ranging from 28 ppm (Stark County) to 150 ppm (Tuscarawas County), both likely sources of coal that was burned to create the ash. Lead, frequently detected above federal standards in off-site wells, commonly ranges from 40 to 210 ppm in Stark County coal ash. Uranium has been measured as high as 63 ppm in Stark County coal ash and 320 ppm in Tuscarawas County coal ash, and thorium up to 22 ppm in Stark County and 60 ppm in Tuscarawas County coal ashes (Botoman and Stith, 1986).
• The high pH in many wells also indicates that the coal ash at the site is the dominant influence on the inorganic contaminants. The natural geochemistry of the area, low-lime glacial tills and sand and gravels of Late Wisconsinan and Illinoian age, and mostly acidic sandstones, shales, coal, and underclay, creates a low pH.
• Common metals found to be soluble in high pH settings include arsenic, cadmium, chromium, and lead, all coal ash metals that have been found in high concentrations off-site (Roadcap et al., 2005).

The alkaline conditions created by water percolating through the ash, and the fine-grained nature of the ash itself, creates conditions favorable for facilitated transport of colloidal precipitates and sorbed metals on colloidal-sized particles of ash, which are able to migrate through the permeable sand and gravel aquifer in which coal ash has been directly placed (Roadcap et al. 2005).

In 1987, the first systematic sampling of groundwater within and adjacent to the IEL landfill was undertaken (Jackson et al. (1989)). These first samples were split between consultants for USEPA, the industrial users of the site and the University of Akron’s Center for Environmental Studies. Samples were collected from seven nested wells placed at the outer margins of the landfill, and five nested wells outside the landfill boundaries (well nests are wells in the same location that are placed a different depths to sample different aquifers). Most well nests included shallow (S), medium (M or I) and deep (D) wells, with a total of 27 wells sampled. MCLs were exceeded for one or more metals in three downgradient well nests on the south margin of the landfill (MW15&M, MW3M&D and MW75&M&D—groundwater in these wells is moving off-site), in three downgradient well nests off-site (MW6S, MW10S, M&D, and one downgradient well nest 900 feet east (MW8M&D) to the south of the landfill. Specific results of the sampling included:

• **Antimony** exceeded the MCL of 0.006 mg/L in nine wells. Concentrations in four on-site wells (1S, 1M, 3M and 3D) ranged from 0.075 to 0.098 mg/L. Downgradient off-site well concentrations of antimony at 8M and 8D, located about 900 feet west of the landfill, ranged from 0.024 to 0.038 mg/L, 4.0 to 6.3 times the MCL.
• **Arsenic** exceeded the MCL of 0.01 mg/L in eight on-site wells (1S&M, 3M&D and 7D&S), and one off-site well 8M (0.06 mg/L), the most distant well from the landfill. Concentrations ranged from 0.06 to 0.54 mg/L, up to 54 times the MCL.
• **Chromium** exceeded the MCL of 0.10 mg/L in one downgradient off-site well (6S), with a measured value of 0.18 mg/L.
• **Lead** exceeded the USEPA Action Level (AL) of 0.015 mg/L in four wells, three of them downgradient off-site wells (10S, 10M, and 10D). Concentrations ranged from 0.18 to 0.24 mg/L, 12 to 16 times the AL.

Since 1990, groundwater sampling has taken place at 27 locations with most locations having monitoring wells screened at three depths. Well sampling from May 1992 to 1993 found extensive exceedances of MCLs in downgradient **off-site** monitoring wells (data summarized from Exhibit 41 in BWEC, 1999):

• **Antimony** exceeded the MCL of 0.006 mg/L in six wells (8S, 18S, 23S, 24S, 25S and 27S) with concentrations ranging from 0.061 to 0.315 mg/L, 10 to 52 times the MCL
• **Arsenic** exceeded the MCL of 0.01 mg/L in three wells (18S, 23S and 24S) with concentrations ranging from 0.055 to 0.132 mg/L, 5 to 13 times the MCL.
• **Barium** exceeded the MCL of 2.0 mg/L in three wells (OW-9, 24S and 27S) with concentrations ranging from 2.1 to 2.3 mg/L.
• **Beryllium** exceeded the MCL of 0.004 mg/L in eight wells (8S, 18S, 19S, 21S, 23S, 24S, and 27S), with concentrations ranging from 0.0052 to 0.121 mg/L, up to 30 times the MCL.
• **Cadmium** exceeded the MCL of 0.005 mg/L in nine wells (1D, 8D, 18S, 12I, 23S, 24S, 25S, 27S and 28D) with concentrations ranging from 0.0054 to 0.265 mg/L, up to 53 times the MCL.
• **Chromium** exceeded the MCL of 0.10 mg/L in eight wells (8S, 18S, 21S, 24S, 24I, 25I, 25S, and 27S) with concentrations ranging from 0.127 to 0.739 mg/L, up to 7 times the MCL.
• **Lead** exceeded the AL of 0.15 mg/L in 26 wells (1D, 6S, 8D, 8S, 10D, 10S, 11D, 11S, 18I, 18S, 19S, 21I, 21S, 23I, 23S, 24S, 24I, 25I, 25S, 26S, 27D, 27I, 27S, 28D, OW8, OW9), with concentrations ranging from 0.0161 to 0.70 mg/L, up to 47 times the AL.

• **Mercury** exceeded the MCL of 0.002 mg/L in two wells (27S and OW11), with concentrations ranging from 0.0024 to 0.0055 mg/L, up to 2.75 times the MCL.

• **Nickel** exceeded the MCL of 0.10 mg/L, which was applicable at the time of sampling, in 13 wells (8S, 10S, 11I, 18S, 21I, 21S, 23S, 24I, 24S, 25I, 25S, 26S, 27S) with concentrations ranging from 0.113 to 1.24 mg/L, up to 12.4 times the MCL. (This MCL was remanded in 1995.)

Geraghty & Miller (1997), consultants for the potentially responsible parties (PRPs) at IEL argued that groundwater sampling since 1990 indicated that natural attenuation of metals at the IEL site was taking place and that no further actions were required to address metals contamination. Ohio EPA (OH EPA) objected to this assertion and released their own report with the following conclusions based on their review of the groundwater data (OH EPA, 1997):

- Several metals such as barium, nickel, cadmium, chromium, and zinc have shown concentration increases in groundwater at the site since 1993.
- Metallic contaminants were found at very high concentrations in nearly all of the off-site monitoring wells.
- The claim that metals exceeding MCLs near the landfill were due to natural conditions unrelated to landfill activities were unsubstantiated.
- The statement that statistical evaluation shows metal levels to be similar to background concentrations is unsupported.
- The claims that the metals are in geochemical equilibrium with their surroundings and that they are mobilized as precipitates are also unsupported.
- “Ohio EPA does not accept claims that dismiss the landfill as a source of significant metallic contamination…Nor does OEPA have any reason to believe that future releases of heavy metals will not occur.”

Despite the strong evidence for off-site contamination of groundwater by metals, Sharp and Associates (2003), consultants for the PRPs at the IEL site, evaluated the 50+ monitoring wells at the IEL site in 2000, and recommended that 34 wells be abandoned. The basis for recommending that 18 of these wells be abandoned was that sampling indicated that they had been “clean” for ten or more years. Furthermore, the report claimed that 17 of the wells where monitoring was continuing were also clean.

A review of this report and available groundwater monitoring data by Weatherington-Rice and Aller (2005), consultants for Concerned Citizens of Lake Township (CCLT), found that MCLs for one or more metals had been exceeded since 1997 in most of the wells claimed to be clean. Furthermore, the consultants for CCLT found that the PRP consultants excluded pH as a parameter when evaluating whether a well was clean. Elevated pH indicates that groundwater has been affected by coal ash. If one considers wells where pH greater than 8.0, which is above natural groundwater conditions, has been measured, only 4 of the 35 wells claimed to be “clean” can be considered clean in terms of having no exceedances of MCLs or elevated pH since 1997.

Weatherington-Rice and Aller (2005) analyzed groundwater sampling data from 1997 to 2001 and identified 35 wells where MCLs had been exceeded for one or more metals. These 35 wells include five wells placed within the landfill, 15 wells that are located at the margin of the landfill with contaminants moving off-site, and 16 wells at ten off-site locations. The distance of off-site monitoring wells from the margin of the landfill ranges from several hundred feet to more than 1,600 feet. Six of the off-site wells with MCL exceedances have been abandoned. As has already been discussed, the list of toxic metals where concentrations have exceeded MCLs is typical of metals associated with coal ash: including antimony, arsenic, cadmium, chromium, lead, selenium, and thallium.
Nineteen of the wells where MCLs have been exceeded since 1997 have been abandoned with the approval of the USEPA. Yet, for example, exceedances of MCLs at well MW121, located about 1000 feet north of the project site, have been measured for cadmium, chromium, lead, selenium, and thallium. This is one of the most distant monitoring wells from the landfill, and the large number of metals with MCL exceedances suggests a preferential pathway for flow of contaminants to the north in the sand and gravels deposits in the north-trending bedrock valley east of the landfill.

A recent search of the database developed by Bennett & Williams Environmental Consultants for groundwater sampling data collected from 1991 to 2000 focused on identifying MCL exceedances for coal-ash related metals in off-site monitoring wells (all of which are located in or close to residential areas). The results of this search documents extensive off-site contamination (Weatherington-Rice, Zwierschke, and Aller, 2010):

- All 11 off-site monitoring well clusters (S, I & D combined for purposes of this summary) had MCL exceedances for at least two and as many as eight toxic metals: MW6 (As, Pb), MW8 (Cd,Pb), MW10 (As, Cd, Pb, Ni), MW12 (As, Cd, Pb, Ni, Ti), MW18 (Sb, As, Be, Cd, Cr, Pb, Ni, Ti), MW23 (As, Be, Cd, Pb, Ni), MW24 (Sb, As, Be, Cd, Cr, Pb, Ni), MW25 (Be, Cd, Cr, Pb, Ni), MW26 (Cd, Pb, Ni), MW27 (Sb, As, Be, Cd, Cr, Pb, Ni, Ti), and MW28 (Cd, Pb, Ni).
- MCL for antimony (0.006 mg/L) was exceeded in three well clusters: MW18 (0.099 mg/L), MW24 (0.161 mg/L), and MW27 (0.133 mg/L). The maximum value of 0.161 is 27 times the MCL.
- MCL for arsenic (0.01 mg/L) was exceeded in seven well clusters: MW6 (0.0135 to 0.0144 mg/L), MW10 (0.052 mg/L), MW12 (0.0124 to 0.0133 mg/L), MW18 (0.025 to 0.099 mg/L), MW23 (0.014 to 0.0279 mg/L), MW24 (0.0103 to 0.132 mg/L), and MW27 (0.0116 to 0.0797 mg/L).
- MCL for beryllium (0.002 mg/L) was exceeded in five well clusters: MW18 (0.0513 mg/L), MW23 (0.0052 to 0.0091 mg/L), MW24 (0.0054 to 0.0957 mg/L), MW25 (0.024 mg/L), and MW27 (0.0058 to 0.0121 mg/L).
- MCL for cadmium (0.005 mg/L) was exceeded in 10 well clusters: MW8 (0.0054 to 0.0115 mg/L), MW10 (0.013 to 0.016 mg/L), MW12 (0.0103 to 0.045 mg/L), MW18 (0.0053 mg/L), MW23 (0.0118 mg/L), MW24 (0.008 mg/L), MW25 (0.0051 to 0.0087 mg/L), MW26 (0.0083 mg/L), MW27 (0.0074 to 0.014 mg/L), and MW28 (0.0095 to 0.265 mg/L). The maximum value of 0.265 mg/L is 53 times the MCL. MCL for chromium (0.1 mg/L) was exceeded in four well clusters: MW18 (0.093 to 0.278 mg/L), MW24 (0.168 to 0.214 mg/L), MW25 (0.160 to 0.561 mg/L), and MW27 (0.115 to 1.680 mg/L). The maximum value of 1.68 mg/L is 17 times the MCL.
- MCL for lead (0.015 mg/L) was exceeded in all 12 well clusters: MW6 (0.032 to 0.0665 mg/L), MW8 (0.017 to 0.0803 mg/L), MW10 (0.0175 to 0.107 mg/L), MW12 (0.032 to 0.0982 mg/L), MW18 (0.0206 to 0.279 mg/L), MW23 (0.0198 to 0.0834 mg/L), MW24 (0.0174 to 0.659 mg/L), MW25 (0.0154 to 0.104 mg/L), MW26 (0.0226 mg/L), MW27 (0.060 to 0.453 mg/L), and MW28 (0.025 mg/L).
- The former MCL for nickel (0.1 mg/L) was exceeded in 10 well clusters: MW10 (0.120 to 0.193 mg/L), MW12 (0.139 to 0.921 mg/L), MW18 (0.142 to 2.2 mg/L), MW23 (0.0105 to 0.175 mg/L), MW24 (0.211 to 1.240 mg/L), MW25 (0.150 to 0.698 mg/L), MW26 (0.123 to 1.550 mg/L), MW27 (0.219 to 0.735 mg/L), and MW28 (0.115 to 0.336 mg/L). The maximum value of 2.2 mg/L is 22 times the former MCL, but would not be considered an exceedance since it was sampled in 1997 after the MCL was remanded.
- MCL for thallium (0.002 mg/L) was exceeded in four well clusters: MW12 (0.0129 mg/L), MW18 (0.0105 to 0.0125 mg/L), MW27 (0.0025 mg/L). The maximum value of 0.0129 is 6.5 times the MCL.

The focus of the recent groundwater database search was on off-site monitoring wells, but on-site MW14 was also included for comparison. This well had exceedances or arsenic, beryllium, cadmium, chromium, lead, nickel and thallium as follows: arsenic (0.0202 to 0.139 mg/L), beryllium (0.005 mg/L), cadmium (0.007 to 0.0152
mg/L), chromium (0.104 to 0.16 mg/L), lead (0.146 to 0.268 mg/L), nickel (0.160 to 0.254 mg/L) and thallium (0.0102 mg/L).

Furthermore, a variety of technically questionable sampling procedures appear to have led to measured contaminant levels that may well be lower than actual concentrations. These include:

- Samples collected starting in 1998 used low-flow sampling procedures in a way that collected stagnant water in the wells rather than representative groundwater samples, as indicated by lack of stabilization of field parameters (Lake Township, 2001; Weatherington-Rice and Aller, 2005). One of USEPA’s own geologists noted inadequate purging in the November 2000 sampling event (USEPA, 2001). Sampling stagnant water from a well can underestimate metals and radionuclides that sink to the bottom of the casing.
- Failure to resolve issues related to high pH readings in ten well nests may mask the potential for mobilization of metals in groundwater (Weatherington-Rice and Aller, 2005).
- Failure to preserve IEL samples for metals in the field with acid and blanket filtering of samples in the laboratory without also testing unfiltered samples has probably led to underestimation of metals and radionuclides.
- Sample detection limits for several samples collected in 1992 and 1993 were above the MCL (BWEC, 1999).
- Field filtering of all samples for radionuclides in 1992-1993 created a low bias for those sampling rounds.

The weight of evidence that on-site and off-site groundwater has been, and continues to be, contaminated by CCW is very strong. Large quantities of coal ash have been placed at the site. The toxic metals found in high levels in the groundwater, are typical of those found at other CCW disposal sites where groundwater contamination has occurred and are present in high concentrations in locally mined Ohio coals, which are the likely source of the ash. No other sources of significant metals contamination have been identified as having been disposed at the site. The permeable sand and gravel aquifers in the area allow contamination to move quickly off-site. Despite evidence of ongoing migration of toxic metals in groundwater flowing through residential areas near IEL, in 2004 19 wells where MCLs had been exceeded, eight located in or adjacent to residential areas, were decommissioned with USEPA’s approval. The rest of the monitoring wells have not been tested for metals since 2004 (Borello, 2010). Ongoing off-site contamination by radionuclides, at least partly attributable to the CCW, is also occurring (see Additional Narrative).

Constituents Involved

Antimony, arsenic, barium, beryllium, cadmium, chromium, lead, mercury, selenium, and thallium; high pH; and various radioisotopes. No information is available for boron and molybdenum, signature CCW metals, because they have never been included in list of metals analyzed for at IEL.

Incident and Date Damage Occurred / Identified

Exceedances of MCLs for antimony, arsenic, chromium, and lead were discovered in nine wells when the first systematic groundwater sampling occurred in May 1987. Exceedances of metals and radionuclides have continued to be measured in on-site and off-site wells through 2001, the most recent sampling data available.

Regulatory Action

Records in the Stark County Health Department indicate that significant complaints about the site began in 1971. In 1983, local residents voiced concerns about pollution from the site to township officials, the Stark County Commissioners, the Stark County Health Department, the Ohio EPA and other governmental units (Jackson et al. 1989). In October, 1984 the site was proposed for inclusion in the National Priority List (NPL) of hazardous waste sites for cleanup under the Superfund program, and in June 1986 it was listed as Final on the NPL (USEPA, 2010). Residential well sampling performed in 1987 showed that private wells were being impacted by groundwater
contaminated by volatile organic contaminants (VOCs) and USEPA installed air strippers in the affected residences. That same year, USEPA signed a Record of Decision (ROD) requiring installation of an alternate water supply in an area containing 100 homes downgradient of the site to the west. In July 1989 USEPA signed a second ROD selecting actions to clean up the site, which included covering the entire site with a multi-layer cap, expanding the landfill gas extraction and treatment system, extracting and treating contaminated groundwater; and pumping groundwater to maintain the water table at a level that is below that of the wastes in the landfill.

However USEPA used the results of monitoring data collected in March 1997 and September 1998 to justify removing the pump-and-treat remediation system (USEPA, 2009). Then in September 2002, a final remedy was selected that eliminated the original ROD action of covering the entire site with a multi-layer cap, and implemented Monitored Natural Attenuation (MNA). For reasons that are unclear, USEPA also allowed the existing gas extraction and treatment system at the landfill to be shut down in 2005 (Borello, 2010). This is the system that ATDSR (1989) considered to be inadequate to protect the health of nearby residents. Other than ongoing monitoring, remedial activities were completed in May 2005 (USEPA, 2010).

There has been no sampling for metals at IEL since August, 2004 (OEPA, 2010). The EPA has not responded to requests from U.S. Senator Sherrod Brown from Ohio to document the basis for its decision to eliminate the provision the 1989 ROD to expand the landfill gas extraction and treatment system or the justification for shutting down the existing system around 2005 (Borello, 2010). In 2004, USEPA authorized the decommissioning of 33 monitoring wells, which further hampers the ability to evaluate the Monitored Natural Attenuation (MNA) at the site. Major controversy has surrounded USEPA’s actions and interpretations of data on the contaminants that are present and the seriousness of remaining contamination at IEL site (see, OEPA, 1997, CCLT website listed in the Sources section, Weatherington-Rice and Aller, 2005, and discussion of evidence for contamination by anthropogenic radioisotopes in Additional Narrative, below).

Wastes Present
One million tons of coal ash from industrial boilers, masonry rubble, paper, scrap lumber, and other materials deemed to be non-toxic were placed in the landfill up to the mid-1960s. From the late 1960s to late 1970s the landfill received industrial organic chemical liquid wastes, waste from hospitals, septic tank cleaning firms, and the general public.

Type(s) of Waste Management Unit
Landfill without liners or cap in an abandoned sand and gravel quarry; lagoon for industrial organic chemical liquid wastes.

Active or Inactive Waste Management Unit
Inactive. Landfill ceased operation in 1980, and remedial action measures were deemed “completed” in 2005.

Hydrogeologic Conditions
The IEL landfill is in a complex hydrogeologic setting with 50 to 140 feet of unconsolidated glacial kame moraine sand and gravel deposits on top of basal glacial till, overlying sand and gravel deposits. A SW-NE bedrock sandstone ridge beneath the landfill is flanked by two parallel valleys filled with sand and gravel outwash. A basal till approximately 5 to 10 feet thick lies on top of the sand and gravel outwash in the area of the landfill. The sand and gravel mined at the landfill was from kame moraine deposits up to about 60 feet thick overlying the basal till. Three aquifers are present in the area of the landfill: (1) a perched water table in the kame moraine deposits; (2) an intermediate aquifer in the sand and gravel below the basal till; and (3) a deep aquifer in the sandstone. Mounding of the water table in the area of the landfill (elevated groundwater levels within the landfill) results in groundwater flow in all directions from the landfill. The general direction of groundwater flow in the middle aquifer is to the west and south. The apparent direction of groundwater flow in the sandstone unit is to the
south. The sand and gravel aquifers are highly permeable (groundwater flow as high as 6 feet/day), allowing contaminants from the IEL site to quickly move off-site once they enter the groundwater system. As noted earlier, although the general direction of groundwater flow is to the west and south, the large number of metals with MCL exceedances in MW12I suggests there is also a highly permeable preferential pathway for flow of contaminants to the north in the sand and gravel deposits in the north-trending bedrock valley east of the landfill. In this area, pumping of residential wells has probably drawn contaminants to the north, across the normal westward groundwater gradient. Unfortunately, MW12I was decommissioned in 2004 (Summarized from Jackson et al., 1989).

At Risk Population

The locations of private wells, shown on the aerial map below, were obtained from the Ohio Department of Natural Resources’ Well Query Database in 2010. This database allows the user to download locations of wells that are registered with the state at the county level. According to this database, there are 3,912 registered private wells within a two-mile radius of the IEL site. No public well data was available from Ohio DNR.

A well map compiled by Weatherington-Rice and Aller (2005) identifies about 90 private wells within 1,500 feet of the IEL site where some groundwater sampling data are available. In the late 1980s, an estimated 2,500 to 3,000 people lived within a one-mile radius of the IEL site (ATDSR, 1989). According to the 1990 Census, 27,121 people live within a three-mile radius of the site, including children below the age of nine years (USEPA, 2009). A narrow corridor of 100 homes west of IEL received free hook-ups to public water to replace wells that were contaminated. Residents northwest and southwest, who may have had contaminated wells, were required to pay a $5,000 hook-up fee, which not all homeowners could afford. It is possible that 30% of the residents near IEL still use private wells. At least two of the four private wells where technetium-99 was found in 2005 were used for drinking water at the time of sampling (Borello, 2010).

![Aerial map of private wells around the IEL site](attachment:image.png)

Legend: Private Drinking Water Wells Shallow/GW Direction

Mounding of groundwater in the disposal area may cause localized flow in other directions.
Residents in the vicinity of the IEL site relied exclusively on private wells until USEPA required installation of an alternative water supply in 1989, about 15 years after residents began to be potentially exposed to contaminants from the initial disposal of fly ash in the highly permeable upper sand and gravel aquifer. The human health impact of this exposure and subsequent failures by USEPA to take adequate remedial actions at the IEL site have been tragic:

- By the early 1990s, Elaine Panitz, on the faculty at Princeton University, expressed concern to ATDSR about the incidence of cancer in the vicinity of IEL, including three cases of rare cancer (Panitz, 1992).
- The Lake Township Board of Trustees compiled information collected by Darlene Lansing, R.N., and from testimony by residents given at public hearings to develop a list, by cancer types, of cancer cases and the streets on which they occurred. Three areas show a high incidence of cancer west, southwest, and northeast of the IEL site (Lake Township, 1999 Exhibits L and M).
- Monitoring well 26I, which was decommissioned in 2004, is located in a neighborhood where cancers have been reported over the years in nearly every home (Borello, 2010)

Additional Narrative

The question as to whether radioactive wastes were placed in the IEL site has been the subject of considerable controversy.

Monitoring wells at the IEL site have been sampled for gross alpha and beta radioactivity in 2000 and 2001 by consultants for the PRPs. Review of these sampling results by Weatherington-Rice and Aller (2005) found the following:

- Alpha radioactivity exceeded 5 pCi/L in eight wells (12D, 6.82; 14S, 15.2 to 16.9; 14I, 6.08; 16I, 13.8; 17S, 10.9 to 25.9; 23S, 7.5 to 13.0; 26I, 7.2 to 9.5) and was detected in two additional wells (20D, 26S). When gross alpha concentrations exceed 5 pCi/L, testing for radium 226 and 228 should be performed to determine if the radium 226/228 MCL of 5 pCi/L has been exceeded. One well (14S) exceeded the MCL of 15 pCi/L for gross alpha radiation. Three of the wells where alpha radioactivity exceeded the MCL's for pCi/L were off-site. Earlier testing of four residential wells near the site for alpha radiation from 1991 to 1993 exceeded 5 pCi/L at RW42 (14), RW42 (11), RW64 (9.7) and RW72 (6.1) (Weatherington-Rice, Zwierschke and Aller, 2010).
- MCL for beta radioactivity (>50 pCi/L), which ATDSR (1989) has suggested is coming from the coal ash at the IEL site, was exceeded in two wells (14S, 60.7 to 70.6; 17S, 64.6 to 66.7) and was detected in 19 other wells (1D, 12D, 14I, 15S, 16I, 17D, 18I, 18S, 19S, 20D, 20I, 20S, 21I, 21S, 22I, 23D, 23I, 23S, and 26I). Seven of the wells where beta radioactivity was detected were off-site wells.
- Earlier sampling of residential wells found total beta radioactivity of 280 pCi/L in one residential well (RW42) on March 20, 1991 (Weatherington-Rice, Zwierschke, and Aller, 2010).

During a sampling event in November 2000, Radium-226 was detected in off-site well 23S and total Radium in on-site well 17S at concentrations above the MCL (Lake Township, 2001).

In July and October 2005, consultants for CCLT performed groundwater sampling for radioisotopes from two irrigation wells and four domestic wells north, northwest, west, and southwest of the IEL site, at depths ranging from 35 to about 100 feet. Samples were analyzed for uranium, plutonium, technetium, and radium. Results for uranium and plutonium were in accordance with naturally occurring radioactivity in undisturbed environments and radium 226+228 was measured at a maximum of 1.9 pCi/L. Technetium-99, an anthropogenic isotope, was detected in all samples at levels ranging from 2.7 to 6.9 pCi/L (Ketterer and Baskaran, 2006a). In another report, experts in environmental radiochemistry and isotope geochemistry, Ketterer and Baskaran (2006b), reviewed prior information related to radioactivity at the IEL site, with specific focus on evidence for anthropogenic radioactivity resulting from disposal of wastes at the site, as distinct from “naturally” occurring sources (which include radioisotopes from fallout from nuclear testing) and radioactivity associated with coal ash. The results of this review can be summarized as follows:
Tritium in IEL vicinity samples exceed the anticipated concentrations of tritium in precipitation and surface waters by approximately one order of magnitude, though well below EPA’s MCL of 20,000 pCi/L.

A May 2001 sample from 14S detected Technetium-99 at a level of 16.49 pCi/L. Technetium-99 is a fission product, and its presence is usually associated with recycled uranium. It is also a decay product of Technetium-99m, a metastable isomer used as a radioactive tracer in medical tests. As noted above, sampling in 2005 found Technetium-99 in all off-site domestic and irrigation wells that were sampled. Technetium is a beta-emitter.

Detectable plutonium in an on-site borehole soil sample at 92 feet, and levels of plutonium in groundwater samples from four wells (1D and 11 at the southwest corner of the landfill and off-site wells 23S and 26I) that are 100 to 100,000 times higher than values reported for natural water systems are “impossible to reconcile” with plutonium levels that would be expected from fallout from weapons testing.

Evidence for non-naturally occurring uranium at IEL is inconclusive. However, USEPA has failed to adequately conduct appropriate analysis (namely, mass spectrometry) that could readily and definitively examine the uranium isotope compositions.

The presence of high levels of gross alpha and gross beta radioactivity in some wells (data summarized above) suggest improper accounting for all alpha- or beta-emitting isotopes and/or generally unreliable radiochemical data.

The federal government has dismissed claims that radioactive contamination from plutonium is a concern at the site, and EPA’s Science Advisory Board reviewed data from the site in 1994 and concluded that it was highly unlikely that radioactive contamination is, or was present at IEL. According to USEPA, since 1994 a “small fraction of samples [have] yielded possible detections at extremely low concentrations” (DOJ/USEPA, 2001).

Although USEPA continues to refuse to acknowledge the presence of radioactive wastes at the IEL site, the evidence for their presence summarized above is strong. The earlier discussion noted that ATSDR has suggested that elevated beta radiation detected in monitoring well samples at IEL are the result of fly ash disposal at the landfill (ATSDR, 1998). Also, as discussed earlier, coals mined in the vicinity of the IEL site are known to have elevated concentrations of uranium and thorium in their ash. Available information does not allow assessment of how much of the elevated radiation levels that have been found in groundwater come from coal ash and how much from other anthropogenic sources. Evidence supporting the conclusion that coal ash at that the IEL site is contributing to off-site elevated radiation in groundwater includes:

- The Radium-226, detected in off-site well 23S above the MCL, is a decay product of Uranium-238, which could well come from uranium in the coal ash at the IEL site. Radium-226 in turn decays to Radon-222, a gas. One study has shown that a coal ash landfill at Wright Patterson Air Force Base in Ohio produced concentrations of radon that have been calculated to exceed indoor radon concentrations in a hypothetical structure built on the landfill (Kryusiak, 1995).
- The Ohio Department of Health has identified IEL as a confirmed radiologically contaminated site with uranium and radon, both coal ash constituents (Ohio Department of Health, 1994).
- Off-site migration of soil-gas, VOCs and gaseous radioisotopes such as Radon-222 (an ash- associated contaminant) remain a concern at the IEL site. The initial Public Health Assessment for IEL found that the existing soil-gas collection and venting system may have been allowing significant concentrations of soil-gas to migrate off-site (ATSDR, 1989).

Colloidal-facilitated transport of inorganic contaminants is a well-established mechanism for movement of contaminants in aquifers (Huling, 1989). It has already been noted that alkaline conditions and the fine-grained nature of the coal ash itself created favorable conditions for colloidal-facilitated transport of metals at IEL. Colloids also have the potential to transport radionuclides (McCarthy and Zachara, 1989), and enhanced mobility of plutonium in the saturated zone has been observed in association with various silicate minerals at the Nevada Test Site (Kerting et al., 1999). It is likely that coal-ash colloids assisted in the transport of the plutonium found in off-site wells 23S and 26I (the latter well is now decommissioned), and the technetium-99 that was found in the six off-site wells that were sampled in 2005.
Sources

Borello, Chris. 2010. Email communications, June 18, July 2 and July 23, 2010.

Ohio Environmental Protection Agency (OH EPA). 2010. Email from Lawrence Antonelli, Site Coordinator, OEP Division of Emergency and Remedial Response, to Chris Borello (July 7, 2010).

Entity/Company – Location
American Electric Power (AEP) d/b/a Ohio Power Company – Muskingum River Plant
County Lane Rd. 32
Beverly, OH 45715
Washington County
Latitude: 39.5868 Longitude: -81.6827

Determination
Demonstrated damage to groundwater moving off-site (to southern property line)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants into groundwater from the upper fly ash reservoir

Summary
Monitoring at AEP’s Muskingum River Plant shows exceedances of federal Maximum Contaminant Levels (MCLs) for alpha particles in the shallow aquifer that is the source of water for private wells in the area, with a maximum level of 128 pCi/L (8.5 times the MCL) found in a well about 350 feet downgradient from the upper fly ash pond. Seepage from the fly ash reservoir dam, which flows into the Muskingum River, has arsenic concentrations of 0.031 mg/L (3.1 times the MCL), boron concentrations of 2.46 mg/L (approaching EPAs Child Health Advisory standard), and mercury concentrations of 0.00671 mg/L (3.3 times the MCL and 4.8 times the EPA Water Quality Criteria for acute toxicity to aquatic life in freshwater). Elevated groundwater levels in the vicinity of the fly ash ponds (mounding) causes groundwater to flow in all directions, so CCW contaminants are moving beyond the disposal site into shallow groundwater to the southeast and southwest toward private wells.
Test of Proof
AEP’s on-site groundwater monitoring data collected between 2005 and 2008 documented the following exceedances of MCLs and secondary MCLs (SMCLs) in shallow and deep groundwater downgradient of the upper fly ash reservoir.

In the shallow aquifer, two monitoring wells (M-9612 and OB-2) south of the disposal site showed primary MCL exceedances of alpha particles, with the highest exceedance at 128 pCi/L (8.5 times the MCL) in well M-9612, located roughly 350 feet downgradient from the upper fly ash pond (AEP uses the term “reservoir”) in the shallow aquifer. Well M-9612 also exhibits upward trends in concentrations for calcium, magnesium, and sulfate. Well OB-2 is located approximately 200 feet south of the ash pond and has upward trends in concentrations for barium and total dissolved solids (TDS).

Data that directly measured concentrations of ash constituents in seepage from the fly ash reservoir dam were available from Outfall 002 which discharges to the Muskingum River. The ash pond effluent including this seepage is channeled from the fly ash pond dam through a pipeline to Outfall 002 north of the ash pond on the Muskingum River (AEP, 2007). The data on the seepage suggests that the leachate from the pond has arsenic concentrations of 0.031 mg/L (3.1 times the MCL), sulfate concentrations of 377 mg/L (exceeds SMCL of 250 mg/L), boron concentrations of 2.46 mg/L (close to the federal Child Health Advisory of 3.0 mg/L and 3.3 times USEPA’s surface water guideline of 0.75 mg/L for long term irrigation for sensitive crops), and mercury concentrations of 0.00671 mg/L (3.3 time the MCL and 4.8 times the EPA Water Quality Criteria for acute toxicity to aquatic life in freshwater of 0.0014 mg/L) (OH EPA, 2007). The similarity of these concentrations to those of the deep Pomeroy Aquifer downgradient of the fly ash pond suggests that contaminants from the shallow aquifer have seeped into the deeper Pomeroy Aquifer. In fact, AEP agrees that such vertical seepage occurs (AEP, 2004). Further confirmation of vertical seepage is that six monitoring wells in the deep aquifer showed barium exceedances with an upward trend with the highest exceedance found in well M-9611 (75.6 mg/L, more than 37 times the MCL) near shallow well OB-2 that also has an upward trend in barium.

On-site groundwater monitoring data showed ranges of exceedances of the SMCL for iron (0.3 – 26 mg/L, 1 to 86 times the SMCL) where exceedances were found in all monitoring wells, and sulfate (250 – 462 mg/L, 1 to 1.8 times the SMCL) in 4 monitoring wells, 3 of which were found in the shallow aquifer downgradient of the reservoir (AEP, 2008). TDS exceeded the SMCL of 500 mg/L in multiple downgradient monitoring wells in the shallow aquifer with a maximum of 902 mg/L.

The downgradient conductivity in the shallow aquifer ranges from 1,290 to 1,760 µmhos/cm in Well M-9617 and from 874 to 1,174 µmhos/cm in well OB-2 (AEP, 2008). Studies of inland fresh waters indicate that streams supporting good mixed fisheries have a conductivity range between 150 and 500 µmhos/cm. Conductivity outside this range could indicate that the water is not suitable for certain species of fish or macroinvertebrates. Industrial waters can range as high as 10,000 µmhos/cm (EPA 2006). The discharge limit for the Ohio River, into which the Muskingum flows, is 800 µmhos/cm (KYWater.org, 2003).

Constituents Involved
Alpha activity, arsenic, barium, conductivity, iron, and sulfate
At Risk Population

Mounding of groundwater in the disposal area may cause localized flow in other directions.

The Muskingum Plant has 70 private drinking water wells within a two-mile radius of the fly ash disposal facility. No public drinking water intakes were found within a five-mile radius of the site. Data was obtained from Ohio’s Department of Natural Resources Well Log Database. A 10 mile by 10 mile square was first constructed with the ash disposal facility at the epicenter. Well data was obtained for this area and then consolidated to private wells within a two-mile radius of the facility (70).

The Muskingum River is presently designated for the following uses: Warmwater Habitat, Agricultural Water Supply, Industrial Water Supply, and Primary Contact Recreation (OPC, 2007). Inside a 1.5-mile radius of the ash pond, 48 drinking water wells were found, with at least two wells as close as 0.25 miles from the ash pond (ODNR, 2010). However, information on water use was unavailable. Well owners generally reported that the quality of the groundwater seemed good, although complaints of hardness, yellow staining (high iron), and smell (probably sulfides) were received in a few interviews by the plant (AEP, 2004). Although the utility has occasionally interviewed well owners about the quality of their water, there is no evidence that AEP or the state are sampling off-site wells.

Incident and Date Damage Occurred / Identified
The earliest MCL exceedances were monitored in 2005.
Regulatory Action
A 2004 Regulatory Order by Ohio Environmental Protection Agency (OH EPA) mandated AEP to implement a groundwater monitoring plan that included installation of fifteen groundwater monitoring wells, four groundwater elevation monitoring wells, and 5 piezometers at the Upper Fly Ash Reservoir as part of a plan to increase the height of the Reservoir’s dam (AEP, 2005). The groundwater monitoring data in this report is the result of this regulatory action.

Wastes Present
Fly ash and bottom ash from the Muskingum River Plant

Type(s) of Waste Management Unit
Upper Fly Ash Reservoir (pond)

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
The Ohio Power Company Muskingum River Plant’s primary outfalls discharge into the Muskingum River at River Mile (RM) 29. In addition to Outfall 002 discharging into the Muskingum River, the upper fly ash reservoir, located one-half mile south of the plant has one outfall for emergency overflow discharging to Millstone Creek, and another outfall for emergency overflow emptying into an unnamed tributary of Millstone Creek (OPC, 2007). Millstone Creek runs into the Muskingum River (OPC, 2007).

The bedrock aquifer beneath the upper fly ash reservoir is comprised of an upper significant zone of saturation overlying a bedrock sandstone aquifer. The significant zone of saturation is comprised of the Gilboy Sandstone to the base of the Benwood Limestone and is predominantly fractured bedrock. This aquifer, referred to as the Shallow aquifer, is monitored by eight wells of which one is upgradient. The Meigs Creek clay shale serves as a continuous geologic barrier that overlies the Pomeroy/Pittsburg sandstone bedrock aquifer. This aquifer, referred to as the Pomeroy Aquifer, is a brackish aquifer with total dissolved solids (TDS) values ranging from 11,000 to 29,000 ppm and is monitored by seven wells. (OPC, 2008).

Seepage from the fly ash pond is expected to form a groundwater mound and exhibit a dominant and divergent radial flow through the fractures within the bedrock (AEP, 2004). Preferential flow continues to occur along the abutments and toward the valleys of the unnamed tributary or Millstone Creek where it is currently diverted into a collection basin. No information is available on water quality at the collection basin because AEP believes it is already monitoring that water quality at Outfall 002 (AEP, 2004), and OH EPA apparently accepts this view. The direction of groundwater flow would be expected to follow a path along the bedrock aquifer underneath the pond to the southeast, as well as toward the Muskingum River (AEP, 2004). To the southwest, seepage from the shallow aquifer has been investigated, though impact is assumed to be minimal due to the fine-silty composition of the soil. In addition, vertical seepage occurs from the shallow aquifer into the deeper Pomeroy aquifer (AEP, 2004).

Additional Narrative
Boron, a key constituent for identifying contamination from CCW, is not analyzed in either on-site or off-site groundwater monitoring wells, although it is monitored in the seepage from the dam at Outfall 002.

While the fly ash reservoir’s emergency overflow Outfalls (007 and 008) discharge into the Millstone Creek and its unnamed tributary, none of the maps of the site delineate where these streams are located. While these outfalls’ sporadic discharges are monitored, no monitoring data was available for the streams.
AEP claims that Pleistocene unit permeability, or the potential for contaminants to leak from ash ponds into aquifers, is characterized as low to very low for the soil at the bottom of the pond and dam foundation soils (7.82 x 10^-2 cm/sec) (AEP, 2004). However, several experts recommend that permeability should be no less than 1 x 10^-7 cm/sec (Albrecht and Cartwright, 1989). In other words, the soil beneath the unlined pond is in the range of being 800,000 times more permeable than what is recommended for ash ponds.

Source(s)

Saines, Steve. 2010. Phone conversation with Steve Saines, OH EPA (June 26, 2010)

Snyder, Doug. 2010. Phone conversation with Doug Snyder, OH EPA (July 15, 2010).
Entity/Company – Location
American Electric Power d/b/a Public Service Company of Oklahoma – Northeastern Station Ash Landfill
7300 East Hwy. 88
Oologah, OK 74053
Rogers County
Latitude: 36.431667 Longitude: -95.700833

Determination
Demonstrated damage to groundwater moving off-site (to the Verdigris River at the southern boundary)

Probable Cause
Leaching of coal combustion waste (CCW) contaminants from CCW landfill to groundwater

Summary
Recent monitoring has revealed that groundwater under the Northeastern Station’s unlined coal ash landfill is heavily contaminated with plumes of metals spreading in at least three directions. Average concentrations of selenium have been measured at 8–10 times the federal Maximum Contaminant Level (MCL) in two wells, periodic exceedances in three other wells, and a maximum selenium concentration of 1.85 mg/L (37 times the federal MCL and 185 times the Oklahoma MCL). Average arsenic concentrations have exceeded the MCL in four wells and are more than 6 times the federal MCL in one well. Average chromium concentrations exceed the MCL in one well and periodic concentrations of chromium exceed the MCL in two other wells with a maximum concentration more than twice the MCL. Lead has exceeded the federal and state MCLs in at least seven wells and measured more than 13 times the MCL (Federal Action Level) in one well. Vanadium has been found at 9 times state health-based standards in one well and exceeded those standards in several other wells. Barium has been found at 4 times the federal MCL in one well. Thallium has exceeded the MCL in two wells. The Oklahoma Department of Environmental Quality (ODEQ) ordered an investigation and corrective action to address the contaminant plume, moving rapidly off-site to the south near the Verdigris River. The plume exceeds the arsenic MCL by more than 3 times some 900 feet from the landfill.
Test of Proof

The Northeastern Station has been dumping CCW in an on-site landfill since 1978, but groundwater monitoring at the landfill did not begin until March 2008. The initial installation of four monitoring wells at that time assumed groundwater flow direction southeast toward the Verdigris River and MW1 on the northern side of the fill was identified as “upgradient.” Installation of additional wells indicates that shallow groundwater is flowing in all directions from the landfill, and the deeper groundwater is flowing to the north-northwest. The present monitoring network samples shallow and deep wells at each location (see satellite photo for location of wells). There are no monitoring wells in the system that can be considered background. Eight quarters of sampling in 2008 and 2009 produced the following results. Note that not all wells were sampled each quarter, and thus their average concentrations do not represent 8 samples, which ODEQ requires for statistical analysis:

- **Arsenic.** Average values in four wells exceed the MCL: MW2S (0.035 mg/L), MW2D (0.062 mg/L, maximum 0.073 mg/L), MW8S (0.034 mg/L, maximum 0.094 mg/L), and MW8D (0.013 mg/L, maximum 0.014 mg/L) ranging from 1.3 to 6.2 times the MCL for drinking water. The maximum concentration, found at MW8S, was 0.094 mg/L, 9.4 times the MCL. The exceedances in both the shallow and deep wells at MW8 are significant because these are the most distant wells from the landfill, about 900 feet away. Periodic exceedances of the MCL for arsenic have occurred in five other wells (MW1S, MW1D, MW3S, MW6D, and MW7D).

- **Chromium.** Average chromium concentrations in MW2S (0.12 mg/L) exceed the MCL for chromium (0.1 mg/L). MW8S averages 0.083 mg/L with possible upward trend. The maximum concentration of 0.225 mg/L in MW8S is more than twice the MCL. Periodic exceedances of MCL for chromium have occurred in MW2D and MW7D.

- **Selenium.** Average values in two wells exceed the MCL: concentrations in MW2S (0.485 mg/L) and MW2D (0.447 mg/L) are more than 40 times the Oklahoma MCL for selenium of 0.01 mg/L, and nearly 10 times higher than the federal MCL of 0.05 mg/L. A maximum concentration of 1.85 mg/L is 18.5 times the state MCL and 37 times the federal MCL for selenium. Periodic exceedances of the MCL have occurred in three other wells (MW1S, MW1D, and MW3S).

- **Vanadium.** There are no Oklahoma or federal MCLs for vanadium, but average values in two wells exceed health-based groundwater standards in Florida and Minnesota (0.049 and 0.05 mg/L respectively): MW2S (0.379 mg/L), MW2D (0.287 mg/L, maximum of 0.465 mg/L), with the average ranging from 5.7 to 7.6 times these health standards. The average concentration at MW8S (0.051) is just above the FL/MN standards. Periodic exceedances of the FL/MN standards for vanadium have occurred in 4 other wells (MW1D, MW3S, MW6D, MW7D).

- **Sulfate.** Seven wells have average sulfate concentrations that exceed the federal Secondary MCL (SMCL) (500 mg/L): MW1S (550 mg/L), MW1D (798 mg/L), MW2S (590 mg/L), MW2D (633 mg/L), MW3S (553 mg/L), MW7D (1004 mg/L, with a strong upward trend), and MW8D (505 mg/L).

- **pH.** Three wells show high pH, with averages exceeding the SMCL (>8.5): MW1S (9.4), MW2S (11.6), and MW2D (11.0). MW8D exceeded the SMCL for pH in two of four samples with an average value within the upper range of acceptable (8.475). Between June and September 2009, pH in MW7S jumped from 6.9 to 10.4 and has remained above 10.0, clearly indicating a geochemical impact from ash leachate.

In addition, high concentrations of other toxic metals have been measured. Barium has been measured at MW7D (maximum value of 8.69 mg/L) 4.3 times the federal MCL and 8.6 times the state MCL of 1.0 mg/L. Periodic exceedances of EPA’s Action Level for lead (0.015 mg/L) have been found at MW1D (max. value of 0.025 mg/L), MW2S (max. value of 0.018 mg/L), MW2D (max. value of 0.017 mg/L) and MW3S (max. value of 0.043 mg/L). Samples have exceeded Oklahoma’s higher MCL for lead of 0.05 mg/L at three wells: MW6D (max. value of 0.053 mg/L), MW7D (max. value of 0.208 mg/L), and MW8S (max. value of 0.140 mg/L). The MCL of 0.002 mg/L for thallium has been exceeded once at MW1S and MW2S (0.003 mg/L in both wells).
In just two years of groundwater monitoring, the exceedances of MCLs have been widespread at this coal ash landfill. Of the 16 wells installed in the monitoring network, two (MW4S and MW6S) have either been dry or had too little water to yield a useful groundwater sample. Of the remaining 14 wells, samples from only one, MW5D on the west site of the landfill, have not exceeded MCLs for at least one parameter. The most severely contaminated wells are MW2S & D, on the southernmost tip of the landfill, near the Verdigris River. These wells both have average concentrations of arsenic, selenium, and vanadium exceeding MCLs and sulfate and pH exceeding the SMCLs, and the shallow well has an average concentration of chromium exceeding the MCL.

Despite evidence clearly documenting radial flow outward in all directions from the landfill, ODEQ continues to designate MW1S and MW1D on the northern perimeter of the fill as upgradient monitoring wells. The high pH (average 9.4) and sulfate (average 550 mg/L) and periodic exceedances of MCLs for arsenic, selenium and thallium in MW1S make it clear that water in this well has been contaminated by the coal ash in the landfill. The same is true for MW1D where average sulfate is very high (798 mg/L), and MCLs are periodically exceeded for arsenic, lead and vanadium.

Two other well nests (multiple wells at the same location that are screened at levels to sample groundwater from different aquifers) at the Northeastern landfill also show evidence of significant contamination. Wells MW8S & D are located about 900 feet northwest of the landfill, and yet average concentrations of arsenic in both the shallow and the deep well exceed the MCL. In MW8S the average concentration of vanadium is high, and the average concentration of chromium is near the MCL with a possible upward trend. Well nest MW7S & D is located north of the landfill, and recent sampling at MW7S has shown a rapid increase in pH (from less than 7.0 in the first three quarters to more than 10.0 in the last two quarters of the two year period) and MW7D has the highest sulfate average of any well (1004 mg/L) with a significant upward trend. Concentrations of arsenic, barium, chromium, lead, and vanadium exceeding the MCL and other state standards for vanadium have also been measured at one or both of these wells.

In summary, contaminated groundwater from the Northeastern CCW landfill is moving off-site in all directions in both the surface and deeper groundwater systems. The most significant contaminant plume is moving to the south toward the Verdigris River, but significant levels of contamination have moved at least 900 feet to the northwest from the landfill, and a significant increase in contamination has also appeared in the well nest due north. Some degree of contamination is also moving southeast of the landfill toward the Verdigris River in the vicinity of MW3S where arsenic has been above MCL in the last three quarters and elevated concentrations of chromium, selenium, and average sulfate above the U.S. Environmental Protection Agency’s Health Advisory Levels have been measured in recent sampling.

Constituents Involved
Arsenic, barium, chromium, lead, selenium, vanadium, thallium, sulfate, and high pH

At Risk Population
According to the Oklahoma Department of Natural Resources (ODNR), there are six private wells used for drinking water in the town of Oologah. Three public drinking water wells exist within a five-mile radius of the Northeastern Plant. ODNR has been working to place all records into a GIS layer that can be plotted and related to other relevant data, so current well data from Oklahoma DNR may be incomplete. In addition, any of the nearby businesses, including the Power Plant itself, could conceivably be affected by contaminated groundwater. The community of Oologah is within two miles north and northwest of the landfill, and the Stilling Basin Public Use Area is located on the Verdigris River immediately one quarter mile upstream of the CCW landfill.
Mounding of groundwater in the disposal area may cause localized flow in other directions.
Incident and Date Damage Occurred / Identified
First round of groundwater sampling in March 2008 found arsenic above the MCL in two of four wells, and selenium above the MCL in one well.

Regulatory Action
On September 26, 2007, ODEQ sent a letter to American Electric Power (AEP) requiring the establishment of a groundwater monitoring program at Northeastern Station’s fly ash landfill. AEP submitted an initial Hydrogeologic Investigation Drilling Plan to ODEQ in November 2007 (Terracon, 2007). After the first round of sampling in four wells, ODEQ noted MCL exceedances for arsenic and selenium, and high pH, alkalinity, sodium and, sulfate. In 2008, AEP submitted a drilling plan for 12 additional monitoring wells, which ODEQ eventually approved. After the second round of sampling in July 2008, ODEQ noted that in addition to arsenic and selenium, the MCL for chromium was exceeded in one well. ODEQ sent a letter to AEP on September 28, 2009 in response to the Groundwater Report for the Second Quarter of 2009, which noted that the data fell short of the required eight rounds for statistical analysis but concluded:

> From the data collected to date it is reasonable to suspect that a release from the landfill is impacting groundwater quality in the vicinity of MW-2S and MW-2D. There is additional concern that due to the relatively high flow rate of groundwater through the limestone surface (940.43 feet per year) and close proximity of the wells to the Verdigris River (approximately 75 feet) that the plume might have reached the river.

ODEQ has required further investigation and possible remedial action for the contaminant plume moving south from the landfill. However, ODEQ does not yet appear to have identified the northwestward moving, and emerging northward-moving contaminant plumes as a concern. Despite evidence to the contrary, ODEQ continues to designate MW1S and MW1D as “upgradient” monitoring wells. The high pH (average 9.4) and sulfate (average 550 mg/L) and periodic exceedances of MCLs for arsenic, selenium and thallium indicate clearly that water in these wells has been contaminated by the coal ash in the landfill. The same is true for the contamination recognized by ODEQ at MW2D, where average sulfate is very high (798 mg/L) and MCLs are periodically exceeded for arsenic, lead, and vanadium.

Wastes Present
Coal fly ash and bottom ash

Type(s) of Waste Management Unit(s)
The 65-acre unlined fly ash landfill southeast of the power station has been in use since coal-fired Units 3 & 4 started operating in 1978. The fly ash landfill operates under Oklahoma State Department of Health landfill permit FA3566010 issued on July 20, 1978 (Terracon, 2009).

A 69-acre bottom ash pond with an approximate capacity of 700 acre-ft is located northwest of the landfill. Actual storage capacity is unknown due to the quarry dug during construction of the plant. The capacity of the pond is based on the memories of long-time employees regarding personal soundings of depths, and drawing scaling. The volume currently stored is variable, with ash routinely removed for beneficial use (AEP, 2009). The bottom ash pond does not appear to be subject to groundwater monitoring (discussed in more detail below).

Active or Inactive Waste Management Unit
Both the fly ash landfill and bottom ash impoundment are active. Increased volume of CCW from installation of new pollution control devices has resulted in a proposed vertical expansion of the landfill (Terracon, 2009).
Hydrogeologic Conditions
In the vicinity of the ash landfill there are three lithologic units. From shallow to deeper depth, they are: (1) an unconsolidated gravelly clay unit ranging in thickness from almost thirty feet to being absent; (2) Lower Pawnee Limestone member of the Pennsylvanian-age Oologah Formation with a thickness ranging from 5 to 43 feet; and (3) Labette Shale member of the Oologah Formation that lies at depth ranging from around 33 to 43 feet below ground surface. Although the landfill is located adjacent to the Verdigris River, no Quaternary alluvial deposits of sand, gravel and clay associated with the river have reportedly been encountered within the landfill or power plant property. The monitoring well network involves nested wells screened in the limestone (designated S for “shallow”) and the lower shale unit (designated D for “deep”). During the hydrogeologic investigations, perched groundwater in the unconsolidated materials was occasionally present, but appeared to be discontinuous across the site. The initial installation of four monitoring wells assumed groundwater flow direction southeast toward the Verdigris River, and MW1 was identified as “upgradient.” When additional monitoring wells were installed in late 2008, MW1S appeared to be on a groundwater divide with flow going to the northwest toward MW8S and southeast toward the landfill. In June 2009, the water elevation in piezometers set in the landfill indicated flow from the landfill toward MW1S, and the presence of contaminants in both MW1S and MW8S downgradient from MW1S confirm that this should not be designated as an upgradient well. Since the deeper monitoring wells were installed in late 2008, MW1D has been downgradient from the landfill in all the potentiometric maps in all subsequent quarterly groundwater reports, yet ODEQ continues to identify MW1D as an upgradient well in its review of the data.

It should be noted that MW8S&D northwest of the landfill, which show evidence of significant contamination, may be affected by migration of metals from the bottom ash pond that lies to the northwest of the landfill. Hydrogeologic investigations at the Northeastern Plant seem to have focused exclusively on the vicinity of the landfill, and no site characterization or groundwater monitoring has specifically addressed the possibility of contamination from the bottom ash pond. Nevertheless, the topography of the site suggests that the landfill is the likely source of contamination in this well (summarized from Terracon, 2008).

Sources

AEP. 2008-2009. Quarterly Groundwater Reports Fourth Quarter, Northeastern Power Station Ash Landfill, Oologah, Oklahoma for Samples Collected March-08, July-08, October-08, November-08, March-09, June-09, September-09, and December-09.

Entity/Company - Location
Portland General Electric Company (PGE) - Boardman Plant
73334 Tower Road
Boardman, OR 97818
Morrow County
Latitude: 45.693611 Longitude: -119.805833

Determination
Demonstrated damage to groundwater moving off-site (at western property boundary)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from the CCW disposal area and numerous disposal units

Summary
Groundwater contamination underneath a 40-acre CCW disposal area, seven wastewater ponds, and a 1,500-acre Reservoir at the Boardman Plant has been contaminated in excess of Oregon groundwater standards, EPA Maximum Contaminant Levels (MCLs) and Secondary MCLs (SMCLs) since 1981. Selenium concentrations have reached 0.019 mg/L (1.9 times the Oregon Numerical Groundwater Quality Reference Level) in two wells; and vanadium concentrations have risen to 0.126 mg/L in three wells (2.5 times the Oregon Reference Level) in recent groundwater monitoring. Total Dissolved Solids (TDS) concentrations have also exceeded federal and Oregon standards in three wells. A nearby farming operation has been using large volumes of water from the Carty reservoir since 2001, despite the Boardman Plant’s disposal of bottom ash drain water and other liquid industrial wastes into this reservoir.
Test of Proof
The Boardman Plant has a 40-acre coal ash disposal area, a 1,500-acre closed-loop reservoir, and six industrial wastewater ponds. Only two of the six wastewater ponds are lined. The water monitoring program for the Boardman Plant includes just six groundwater wells and three surface water sampling points from the reservoir (sampling makeup water, at the plant intake, and at a withdrawal for agricultural irrigation). Only one groundwater well, Well 130, monitors the wastewater ponds, and it is usually too dry to sample it. Arsenic has been found in Well 008 at levels between 1 and 2 times the MCL in groundwater on the other side of Carty Reservoir as well as occasionally at similar levels in wells at the coal ash disposal area while arsenic has been consistently below the MCL in the reservoir water. However this report focuses on impacts more clearly seen in the groundwater monitored by Wells 052, 053, 120 and 122 around the 40-acre coal ash disposal area. Two of them, Wells 052 and 053, are located 750 and 1,500 feet from the disposal area, respectively, and a third one, Well 122, is too dry to sample, leaving only Well 120 in close proximity to the coal ash.

Portland General Electric Company (PGE), the owner of Boardman Plant, has argued that seepage from the Carty Reservoir has created widespread, perched aquifer conditions, and that this seepage is responsible for shallow groundwater in coal ash disposal area wells located approximately 2,000 feet (0.4-mile) away from the reservoir. PGE has also argued that Reservoir seepage has higher quality than naturally occurring groundwater (PGE, 2005). If these assertions were true, then the quality of groundwater in these wells would be similar to that of the reservoir. However, a comparison of 2009 data from groundwater wells at the coal ash disposal area with data from the Reservoir from 1981-1987 suggests that groundwater in the coal ash disposal area has been contaminated by CCW and is not similar to Reservoir water. The data shows that typical CCW indicator parameters are present at the following levels in on-site groundwater, particularly around the 40-acre coal ash disposal area:

- **Selenium** – has exceeded the Oregon Numerical Groundwater Quality Reference Level (0.01 mg/L) in coal ash disposal area Wells 053 and 120. Samples collected from Well 120, the nearest well to the coal ash disposal area, exceeded the State standard in 1987, the first year a sample was collected, and 13 additional times since 1987. The maximum selenium concentration reported for Well 120 was 0.019 mg/L in 1989. The State standard has been exceeded twice in Well 053, the first time in 1982 at 0.016 mg/L, the maximum concentration measured. A comparison with Reservoir water is not possible as the Reservoir is not analyzed for selenium.

- **Vanadium** – has exhibited increasing trends in all wells on-site with the highest concentrations measured in wells monitoring the coal ash disposal area. Reservoir water samples are not analyzed for vanadium. Although there is no federal or State MCL for vanadium, Oregon Groundwater Quality Protection Rule 340-040-0001 requires that all current and scientifically valid information be available to determine acceptable pollutant concentrations. Florida (Florida, 2010) has a groundwater standard of 0.049 mg/L for vanadium and Minnesota (Minnesota, 2010) has a groundwater standard of 0.050 mg/L. Increased trends beyond these standards were found in the following wells:
 - Coal ash Disposal Area Wells – increased vanadium trends began in 1991 in wells closest to the coal ash disposal area, Wells 052 and 120, and in 1998 in Well 053 located further away. Concentrations in Well 052 have exceeded 0.050 mg/L every year since 1991 (19 times), and the maximum concentration measured was 0.075 mg/L in 2002. Concentrations in Well 120 began exceeding 0.050 mg/L in 1991 and have exceeded it every year since. The maximum concentration reported for Well 120 was 0.089 mg/L in 2006. Vanadium concentrations in Well 053 also exceeded 0.050 mg/L in 1991 and have exceeded it every year since 1998. Well 053 had the highest reported concentration, 0.126 mg/L in 2006.

- **Alkalinity** – had remained constant and relatively flat at the Reservoir (121 mg/L average, 135 mg/L maximum), yet dramatically increased in Well 053 (coal ash disposal area well) during the same period (290 mg/L average, 360 mg/L maximum, increasing trend).
IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

- **Chloride** – has remained relatively constant and flat in the Reservoir water (18 mg/L average, 31 mg/L maximum) while chloride concentrations in the coal ash disposal area well closest to the coal ash, Well 120, have been much higher (135 mg/L average, 197 mg/L maximum).

- **Sulfate** – has remained relatively constant and flat at the Reservoir (33 mg/L average, 47 mg/L maximum), while sulfate concentrations in two coal ash disposal area wells have been much higher and had increasing trends (Well 052: 164 mg/L average, 209 mg/L maximum; Well 120: 157 mg/L average, 240 mg/L maximum). In 2008, PGE concluded that there were “significant” increases in sulfate in Wells 052 and 120 but that the increase was related to unspecified “sampling and analysis problems” rather than CCW disposal or Plant operations.

- **TDS** – has remained relatively constant and flat at the Reservoir (213 mg/L average, 261 mg/L maximum) but been much higher at Well 052 (647 mg/L average, 734 mg/L maximum) and Well 053 (639 mg/L average, 952 mg/L maximum) and highest closest to the coal ash disposal area at Well 120 (846 mg/L average, 1,073 mg/L maximum). TDS concentrations have exceeded the federal SMCL (500 mg/L) as well as the Oregon Numerical Groundwater Quality Guidance Level in each of the three wells at the coal ash disposal area for every annual sampling event for more than two decades (Well 052, 25 years; Well 053, 29 years; and Well 120, 23 years).

Groundwater data suggest a correlation between higher concentrations of vanadium and higher bicarbonate alkalinity concentrations. As the alkalinity of the groundwater has generally increased, the vanadium concentrations have increased.

Seepage from the Carty Reservoir results in 2,000 acre-feet (651 million gallons) of recharge annually to the underlying groundwater (PGE, 2005). Shortly after Carty Reservoir was filled, Six Mile Creek, a previously dry canyon stream bed, began to flow (Richardson, 2010) – indicating that the Creek flow was due to Reservoir leakage into the stream bed and that water quality in the Creek would be substantially similar to water in the Reservoir. PGE has not reported an annual seepage volume from any industrial wastewater pond or the coal ash disposal area.

Constituents Involved

Selenium, vanadium, total dissolved solids, chloride, sulfate, and alkalinity

At Risk Population

Groundwater in the vicinity of the Boardman Plant is used extensively for commercial irrigation and water supply. A review of well logs within 5 miles of the Boardman Plant found 14 wells for commercial irrigation, 19 wells for private water supply, and 18 wells for livestock watering (OWRD, 2010). Eleven of the water supply wells were for the PGE plant, and one of those wells was an “industrial” well, indicating that local groundwater may be used as a drinking water source at the Plant. Of the 10 drinking water wells, the average completion depth was only 103 feet deep – indicating that the shallow groundwater is used for drinking water.

In 2001, the Carty Reservoir began an annual “blow down” to remove poor quality water by providing it to Threemile Canyon Farms, an organic, commercial farming operation just west of the plant, for irrigation (PGE, 2010). Recently, approximately 465 million gallons were withdrawn from Carty Reservoir during three months in 2009 (PGE, 2010). PGE does not test this irrigation water for selenium or vanadium despite the exceedances of standards in groundwater at the Boardman Plant.

The largest number of irrigation and livestock well owners are located just west of the Boardman Plant, near R.D. Offutt, a large concentrated animal feedlot operation (CAFO) that is co-located with Threemile Canyon Farms operations (Richardson, 2010). A review of well logs for the R.D. Offutt wells indicates they are drawing shallow groundwater for commercial purposes – with five of 13 wells nearest the plant being completed less than 80 feet below ground surface. Of those wells, four were less than 30 feet deep.
Incident and Date Damage Occurred / Identified
Exceedances of groundwater standards were first documented in 1981.

Regulatory Actions
The Site Certificate Agreement that set the environmental monitoring and discharge conditions for this Plant is based upon a 1975 version of Oregon Administrative Rules Chapter 345, Division 26, “Construction and Operation Rules for Thermal Power Plants”. The Certificate Agreement is handled by the Oregon Department of Energy (ODOE). PGE has gone to ODOE in 2003 and 2004 to reduce both the number of parameters sampled, and water monitoring requirements (ODOE, 2010). Water discharges are regulated under Water Pollution Control Facilities Permit (No. 100189) based on criteria established in 1975 (PGE, 2005). According to The Oregon Department of Environmental Quality (ODEQ) no assessment of the contamination long evident at this site has been required because no such requirement was included in the Site Certificate 35 years ago when the Certificate was first approved (Nadler, June 2010).

Oregon Groundwater Quality Protection Rules OAR 340-040 require that a monitoring system “be capable of determining rate and direction of groundwater movement”, and that both upgradient and downgradient groundwater quality be determined. Neither a potentiometric surface diagram nor a determination of groundwater flow rate was found in this file review. Further, PGE has not established upgradient and downgradient wells for any disposal unit. In fact, the monitoring system at the Carty Reservoir includes only one well; the evaporation pond to the north includes only one well; and the industrial waste ponds, including those located between the reservoir and the plant, include no wells. In short, the groundwater monitoring and sampling program does not comply with current Oregon rules, which also would have required a Preliminary Assessment Plan within 30 days of a “significant increase” in groundwater parameters if immediate re-sampling did not indicate invalid results. However, these groundwater protection rules were not in effect in 1975, when the certificate was first issued and thus do not apply to this site (Nadler, June 2010).

Wastes Present
Fly ash, bottom ash, and economizer ash (PGE, 2010) (economizer ash is similar to bottom ash in particle size (Nadler, July 2010))

Type(s) of Waste Management Unit
CCW disposal areas include a 40-acre coal ash disposal area, a 1,500-acre, closed loop Reservoir, and six other industrial wastewater ponds. Carty Reservoir is over 3 miles long and was created to supply cooling water, boiler make-up water, and fire water to the plant. Bottom ash transport water, boiler blowdown, and cooling water discharge into Carty Reservoir (Nadler, June and July 2010). The Reservoir is also used for disposal of liquid wastes (PGE, 2005). Much of the raw water for the Reservoir comes from nearby Threemile Canyon Farms, an adjacent organic, commercial farming operation (potatoes and dairy cows) which gets the water from the Columbia River.

According to aerial photography and the most recent annual groundwater report (PGE, 2010), at least six industrial wastewater ponds and three sewage lagoons exist on the Plant property – in addition to the Carty Reservoir. Four ponds located south of the Boardman Plant and between it and Carty Reservoir are used to settle bottom ash from transport water prior to discharge into Carty Reservoir (Nadler, July 2010). Two other ponds north of the Plant are used to evaporate water softening treatment wastewater and laboratory wastes (Nadler, July 2010). Three other ponds located just northwest of the Plant and the coal pile, identified by PGE as being “industrial wastewater ponds,” are instead domestic sewage lagoons (Nadler, July 2010). Low volume wastes such as turbine cleaning water are transported off-site for disposal (Nadler, July 2010).
The two evaporation ponds north of the Plant were unlined until 2007 (PGE, 2010). These ponds receive wastewater discharges that are too high in TDS for discharge to the Carty Reservoir (PGE, 2005). PGE monitors for only flow, pH, TDS, and ammonia-nitrogen and none of the metals that are prevalent in on-site wells. Approximately 3 million gallons of wastewater was discharged to the ponds in just three months in 2007, prior to the liner being constructed under them (PGE, 2008), and millions of gallons were likely discharged on an annual basis for at least 26 years prior to the liner installation. Only one well, Well 130, monitors groundwater under these ponds, and PGE maintains that Well 130 has never had sufficient water to sample since it was installed in 1980 (PGE, 2010). The fact that there has not been perching of groundwater on the Pomona Basalt zone as has happened beneath the ash landfill, suggests that there is a preferential pathway for rapid downward migration of the wastewater to the deeper Columbia River Basalt aquifer.

The 40-acre coal ash disposal area (PGE, 2010) is separated from the Carty Reservoir by man-made dikes (PGE, 2005). Excess water in the coal ash disposal process evaporates within the disposal area (PGE, 2005). Approximately 93 percent of the coal ash generated in 2009 was sold for beneficial re-use (PGE, 2010) in the concrete industry (Nadler, 2010). The bottom of the coal ash disposal area is 8 feet above the highest reservoir elevation and is lined (thickness not given) with coal ash that was hydrated and compacted to a 1×10^{-7} centimeters per second permeability (PGE, 2005). However the presence of CCW-related contaminants in the monitoring wells around the disposal area indicates that the liner is not functioning as a significant barrier for downward migration of contaminants from the landfill.

Active or Inactive Waste Management Unit

Active

Hydrogeologic Conditions

A shallow, perched aquifer occurs beneath the plant area atop the Pomona Basalt formation “due to surface water of the Carty Reservoir” (PGE, 2005). The five monitoring wells at the plant’s coal ash disposal area and near the reservoir are screened in this perched Pomona Basalt zone. Well 130, located at the industrial waste evaporation ponds to the north, is screened in the shallow Elephant Basalt formation above the Pomona Basalt and PGE reports that it is too dry to sample.

The main groundwater aquifer occurs 350 feet below the plant in the Columbia River Basalt formation (PGE, 2005). The deepest well at the Boardman Plant is 108 feet deep), and the average depth of wells that produce water is 81 feet (PGE, 2005). Thus the deeper Columbia River Basalt regional aquifer is not monitored for any effect from the plant operations.

Dramatic changes in groundwater elevations in Well 052 and Well 120 suggest that increased groundwater infiltration has resulted from the coal ash disposal area. Well 052, located 250 yards to the northeast of the coal ash disposal area and almost 700 yards feet from the Carty Reservoir, was initially too dry (less than 1-foot of static water level) to sample when it was installed in 1980 but by 1985, the water level had risen almost 19 feet. From 1986 to 1996, the water level continued to rise to a current stabilized 40-foot water column (PGE, 2010). Groundwater in Well 120, 25 yards south of the coal ash disposal area and almost 700 yards from the Carty Reservoir, was not found until 1987, seven years after the well was first installed. Groundwater elevations then rose by 9 feet in Well 120 and have remained constant since 1997.

Sources

Richardson. 2010. Telephone conversation with Phil Richardson, Oregon Department of Environmental Quality, Pendleton Office (July 7, 2010).

Entity/Company - Location
FirstEnergy – Bruce Mansfield Power Plant’s Little Blue Run Surface Impoundment
P.O. Box 128
Greene Township, Beaver County, PA and Grant District, Hancock County, WV
Latitude: 40.626375 Longitude: -80.514947

Determination
Demonstrated damage to off-site groundwater and off-site surface water (in domestic wells and in Marks Run and other surface waters)

Probable Cause(s)
Leaching, seepage, and discharge of coal combustion waste (CCW) contaminants from Little Blue impoundment into groundwater and surface waters. The additional head pressure created by the expansion of the CCW impoundment in 2006 may also be forcing contaminated water further away from the impoundment.

Summary
Discharges to groundwater and surface water from the 1,300-acre “Little Blue” surface impoundment have exceeded MCLs for arsenic and other parameters in multiple off-site residential drinking wells (prompting several property buyouts by FirstEnergy), exceeded Pennsylvania Water Quality Criteria (PA WQC), including the Criteria Continuous Concentration (CCC) and Criteria Maximum Concentration (CMC), in Mark’s Run and other off-site surface water sources, and pervasively exceeded federal Maximum Contaminant Levels (MCLs) at many on-site groundwater monitoring wells.
*For this site, “Off-site” means property that is currently beyond the property boundary or was originally beyond the property boundary but has since been bought out by FirstEnergy or Penn Power. This determination was made using the best available data. “On-site moving off-site” means the well is on-site but more than 150 feet from the closest part of the impoundment.

For example:

- Arsenic has been measured in at least two off-site residential drinking wells above the MCL of 0.01 mg/L, including a reading of 0.0146 mg/L in one family’s well in 2008, and a reading of 0.021 mg/L at another family’s well. MCLs for cadmium, barium, fluoride, lead, and turbidity were also exceeded in off-site residential drinking wells, as were Secondary MCLs (SMCLs) for aluminum, chloride, iron, manganese, pH, sulfate, and total dissolved solids (TDS).

- In off-site surface water, arsenic has exceeded the PA WQC of 0.01 mg/L at least eight times at three locations between 2003 and 2010, with concentrations trending upwards, including a reading of 0.028 mg/L (2.8 times the criteria) in 2010. Thallium, cadmium, hexavalent chromium, lead, antimony, selenium, and boron also exceeded PA WQC in off-site surface water, as did many pollutants with secondary WQC.

- In on-site groundwater that flows off-site, arsenic exceeded the 0.010 mg/L MCL at least 24 times in 14 wells in 2006, 2009, and 2010, including concentrations of 0.030, 0.033, and 0.036 mg/L in three different wells. Fluoride, lead, and turbidity MCLs were also exceeded, as well as SMCLs for several other pollutants. On-site groundwater monitoring wells also had exceedances of SMCLs for chloride, iron, manganese sulfate, and turbidity.

- On-site surface waters that flow off-site were contaminated with arsenic at 0.013 mg/L, 1.3 times the WQC of 0.01 mg/L, antimony at 0.012 mg/L, more than double the CCC of 0.0046 mg/L. Selenium was also double the PA WQC at on-site surface water monitoring point SW-3. In addition, aluminum exceeded secondary standards in on-site surface water that flows off-site.

Test of Proof

FirstEnergy’s Little Blue Run (“Little Blue”) surface impoundment, the largest impoundment east of the Mississippi River, is an unlined CCW disposal area with a permitted area of 1,694.6 acres that contains flue gas desulfurization (FGD) sludge and fly ash. This CCW surface impoundment has potential environmental and public health impacts in three states, as the impoundment spans Pennsylvania and West Virginia, and its earthen dam retaining wall is immediately across the Ohio River from Ohio. Coal ash slurry from the Bruce Mansfield Power Plant is transported via a seven and a half mile pipe to Little Blue. Data gathered from private residential well testing results, discharge monitoring reports, Notice of Violations (NOVs), inspection reports, and correspondence files revealed the following evidence of CCW contamination:

Off-site groundwater – off-site groundwater contamination has been pervasive, including drinking water wells 0.5 mile away or further from the Little Blue impoundment. See Chart 1. These exceedances appear to have increased since the expansion of the impoundment in 2006. Evidence of contaminated off-site drinking water includes arsenic readings in excess of the MCL (0.01 mg/L) in at least eight off-site groundwater wells. Two of these wells were residential drinking water wells, with one well containing arsenic at 0.021 mg/L (more than twice the MCL), and another family’s well containing arsenic concentrations that increased from 0.013 to 0.0146 mg/L between 2008 and 2009. MCLs were also exceeded in off-site groundwater wells for cadmium, barium, fluoride, lead, and turbidity. In addition, many SMCLs were exceeded in off-site groundwater. As a result, FirstEnergy has monitored drinking water wells at several nearby homes, and subsequently purchased those homes due to well contamination.

Off-site surface water – off-site surface water contamination includes exceedances of both continuous/chronic (CCC) and maximum/acute (CMC) limits set forth in Pennsylvania Water Quality Criteria (WQC). These
exceedances occurred both at FirstEnergy’s off-site monitoring points in streams and creeks, including Mark’s Run and Little Blue Run, and at seeps located at private residences. See Chart 1 (for brevity, several pollutants in off-site surface water that exceeded MCLs but did not have an associated WQC were not charted). Many criteria have exceeded WQC only after the expansion of the impoundment in 2006. For example, arsenic levels have steadily increased, only exceeding WQC at one point in Pennsylvania, S-17 (a surface water seep about 1,490 feet from the closest part of Little Blue) in 2003, with a reading of 0.016 mg/L. Between 2008 and 2010, arsenic was found in two additional surface water points, including exceedances at S-31 (a monitoring point in Mark’s Run, in a residential neighborhood in West Virginia) and at SW-5 (a spring over 2,000 feet from Little Blue), with arsenic concentrations of 0.024 and 0.028 mg/L. Other off-site surface water exceedances included an exceedance of the CMC for hexavalent chromium, a lead reading of 0.15 mg/L, far exceeding the CCC of 0.01094 mg/L, at an off-site unpermitted seep, and pervasive boron contamination at at least seven wells. Cadmium, thallium, selenium, and boron also exceeded WQC in off-site creeks, springs, and seeps.

These off-site surface water exceedances occurred in at least 17 downgradient surface water sources, including: SW-5, a surface water source (type marked “other” and likely a seep) in Pennsylvania; S-9a (a spring in Pennsylvania); S-10-MC (a stream in Pennsylvania); S-16-MC (a stream in Pennsylvania); S-17 (a spring in Pennsylvania); S-28 (a spring in West Virginia); S-30 (a spring in West Virginia); S-31 (a spring in West Virginia); S-32 (a spring in West Virginia); S-34 (a spring in West Virginia); S-35 (a spring in West Virginia); SW-5, a surface water source (type marked “other” and likely a seep) in Pennsylvania; S-9a (a spring in Pennsylvania); S-10-MC (a stream in Pennsylvania); S-16-MC (a stream in Pennsylvania); S-17 (a spring in Pennsylvania); S-28 (a spring in West Virginia); S-30 (a spring in West Virginia); S-31 (a spring in West Virginia); S-32 (a spring in West Virginia); S-34 (a spring in West Virginia); S-35 (a spring in West Virginia); LR-1 (a spring in West Virginia); LR-2 (a spring in West Virginia); Mark’s Run (a stream in West Virginia); a seep at a private residence in West Virginia; and two springs at two private residences in Pennsylvania.

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MEDIUM</th>
<th>STANDARD</th>
<th>SAMPLING DATES</th>
<th>#EXCEED-ANCES</th>
<th># WELLS</th>
<th>HIGHEST EXCEEDANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>MCL: 0.01</td>
<td>1993, 2008–2009</td>
<td>5</td>
<td>2</td>
<td>0.021</td>
</tr>
<tr>
<td>Arsenic (mg/L)</td>
<td>Groundwater</td>
<td>MCL: 0.01</td>
<td>2006–2009</td>
<td>8</td>
<td>6</td>
<td>0.025</td>
</tr>
<tr>
<td>Barium (mg/L)</td>
<td>Groundwater – drinking wells and tap water</td>
<td>MCL: 2</td>
<td>1993–2005</td>
<td>3</td>
<td>3</td>
<td>5.98</td>
</tr>
<tr>
<td>Cadmium (mg/L)</td>
<td>Groundwater – drinking well</td>
<td>MCL: 0.005</td>
<td>1996</td>
<td>1</td>
<td>1</td>
<td>0.85 (total) 0.5 (dissolved)</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>Groundwater – drinking well</td>
<td>MCL: 2</td>
<td>2008–2009</td>
<td>3</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>Lead (mg/L)</td>
<td>Groundwater – drinking wells and tap water</td>
<td>Federal Action Level: 0.005</td>
<td>1993–2009</td>
<td>5</td>
<td>5</td>
<td>1.8 (total) 0.3 (dissolved)</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Groundwater – drinking wells</td>
<td>PA MCL: 1</td>
<td>2004-2006</td>
<td>2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Groundwater</td>
<td>PA MCL: 1</td>
<td>1993–2009</td>
<td>46</td>
<td>21</td>
<td>220</td>
</tr>
<tr>
<td>Aluminum (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 0.2</td>
<td>2009</td>
<td>1</td>
<td>1</td>
<td>0.711</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 250</td>
<td>2004–2010</td>
<td>7</td>
<td>7</td>
<td>1,900</td>
</tr>
<tr>
<td>CONTAMINANT</td>
<td>MEDIUM</td>
<td>STANDARD</td>
<td>SAMPLING DATES</td>
<td>#EXCEEDANCES</td>
<td># WELLS</td>
<td>HIGHEST EXCEEDANCE</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 250</td>
<td>2008</td>
<td>5</td>
<td>5</td>
<td>3,520</td>
</tr>
<tr>
<td>Iron (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 0.3</td>
<td>1993–2010</td>
<td>21</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Iron (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 0.3</td>
<td>2008</td>
<td>5</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 0.005</td>
<td>1993–2009</td>
<td>31</td>
<td>19</td>
<td>2.399</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 0.005</td>
<td>2008</td>
<td>8</td>
<td>8</td>
<td>3.27</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 250</td>
<td>2010</td>
<td>3</td>
<td>1</td>
<td>910</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 250</td>
<td>2007–2009</td>
<td>6</td>
<td>4</td>
<td>1,710</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>Groundwater – drinking wells</td>
<td>SMCL: 500</td>
<td>1992–2010</td>
<td>15</td>
<td>7</td>
<td>2,900</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 500</td>
<td>2008</td>
<td>10</td>
<td>10</td>
<td>7,310</td>
</tr>
<tr>
<td>Antimony (mg/L)</td>
<td>Surface Water</td>
<td>PA Health Criteria: 0.0056</td>
<td>2003</td>
<td>4</td>
<td>1</td>
<td>0.010</td>
</tr>
<tr>
<td>Arsenic (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.010</td>
<td>2003–2010</td>
<td>8</td>
<td>3</td>
<td>0.028</td>
</tr>
<tr>
<td>Boron (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 1.6</td>
<td>2008–2010</td>
<td>23</td>
<td>7</td>
<td>15.200</td>
</tr>
<tr>
<td>Cadmium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.00064</td>
<td>2010</td>
<td>1</td>
<td>1</td>
<td>0.00074</td>
</tr>
<tr>
<td>Hexavalent Chromium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.010</td>
<td>2003 (average of 3 analyses)</td>
<td>1</td>
<td>1</td>
<td>0.028</td>
</tr>
<tr>
<td>Lead (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.01094</td>
<td>2010</td>
<td>2</td>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>Selenium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.0046</td>
<td>1989–2003</td>
<td>2</td>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>Thallium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.00024</td>
<td>2009</td>
<td>1</td>
<td>1</td>
<td>0.00046</td>
</tr>
<tr>
<td>pH (standard units)</td>
<td>Surface Water</td>
<td>Secondary PA WQC: 6.5–8.5</td>
<td>2007–2010</td>
<td>2</td>
<td>2</td>
<td>5.5</td>
</tr>
<tr>
<td>Total Suspended Solids (mg/L)</td>
<td>Surface Water</td>
<td>Permit Limit: 60</td>
<td>1989</td>
<td>1</td>
<td>1</td>
<td>194</td>
</tr>
</tbody>
</table>
On-site groundwater moving off-site – on-site groundwater contamination includes extensive arsenic contamination, with at least 24 MCL exceedances in at least 14 different wells that were more than 150 feet away from the closest part of Little Blue. All of these samples were taken between 2006 and 2010, after FirstEnergy’s expansion of Little Blue. See Chart 2. Fluoride and turbidity MCLs were exceeded 27 and 41 times, respectively. In 1996, lead exceeded the Federal Action Level of 0.015 mg/L with readings of 2.69 mg/L (538 times the MCL) and 1.41 mg/L (282 times the MCL). There were also numerous violations of SMCLs for turbidity, chloride, iron, manganese, and sulfate, and pH was cited for showing an increasing trend at one well in 2003.

On-site surface water moving off-site – on-site surface water contamination moving off-site includes exceedances of PA WQC for arsenic, antimony, hexavalent chromium, selenium, thallium, and boron, with the boron exceedances occurring at least 15 times at 9 downgradient monitoring points: Outfall 001 (discharge to Hayden Run Creek); Outfall 021 (discharge to a stream, Little Blue Run, that discharges to the Ohio River); Outfall 023 (collected seeps/springs to Mill Creek); Outfall 025 (collected seeps/springs to Mill Creek); Outfall 026 (collected seeps/springs to Mill Creek); SW-3 (a seep in Pennsylvania just below the earthen dam); SW-4 (a seep in Pennsylvania just below the earthen dam); S-15 (a spring in Pennsylvania about 1,300 feet from the impoundment); and S-18 (a spring in Pennsylvania). See Chart 2.

Chart 2. ON-SITE CONTAMINATION MOVING OFF-SITE

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MEDIUM</th>
<th>STANDARD</th>
<th>SAMPLING DATES</th>
<th>#EXCEEDANCES</th>
<th># WELLS</th>
<th>HIGHEST EXCEEDANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (mg/L)</td>
<td>Groundwater</td>
<td>MCL: 0.01</td>
<td>2006–2010</td>
<td>24</td>
<td>14</td>
<td>0.036</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>Groundwater</td>
<td>PA MCL: 2</td>
<td>1994–2006</td>
<td>27</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td>Lead (mg/L)</td>
<td>Groundwater</td>
<td>MCL: 0.015</td>
<td>1996</td>
<td>2</td>
<td>2</td>
<td>2.69</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>Groundwater</td>
<td>MCL: 1</td>
<td>1993–2008</td>
<td>41</td>
<td>18</td>
<td>8,800</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 250</td>
<td>1998–2009</td>
<td>18</td>
<td>15</td>
<td>5,190</td>
</tr>
<tr>
<td>Iron (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 0.3</td>
<td>2007–2008</td>
<td>8</td>
<td>8</td>
<td>6.41</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 0.05</td>
<td>2007–2008</td>
<td>12</td>
<td>10</td>
<td>3.77</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 250</td>
<td>2007–2009</td>
<td>11</td>
<td>10</td>
<td>1,980</td>
</tr>
<tr>
<td>Antimony (mg/L)</td>
<td>Surface Water</td>
<td>Health Criteria: 0.0056</td>
<td>1998</td>
<td>1</td>
<td>1</td>
<td>0.012</td>
</tr>
<tr>
<td>Arsenic (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.010</td>
<td>2008</td>
<td>1</td>
<td>1</td>
<td>0.013</td>
</tr>
<tr>
<td>Boron (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 1.6</td>
<td>1993–2010</td>
<td>15</td>
<td>6</td>
<td>11.8</td>
</tr>
<tr>
<td>Hexavalent Chromium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.01</td>
<td>PA CMC: 0.016</td>
<td>1993, 1998</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Selenium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.0046</td>
<td>1993, 2004</td>
<td>2</td>
<td>2</td>
<td>0.0939</td>
</tr>
<tr>
<td>Thallium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.00024</td>
<td>1998</td>
<td>4</td>
<td>3</td>
<td>0.005</td>
</tr>
<tr>
<td>Aluminum (mg/L)</td>
<td>Surface Water</td>
<td>Secondary PA CCC: 0.75</td>
<td>1993</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

On-site groundwater – despite the fact that most of the on-site monitoring points and wells are “moving off-site” (meaning they are more than 150 feet from the boundary of the impoundment), on-site groundwater also had...
exceedances of MCLs, including multiple turbidity MCL exceedances and a manganese SMCL exceedances. See Chart 3 (for brevity, no SMCL exceedances were included on this chart, although there were many).

On-site surface water – on-site surface water showed an exceedance of the CCC for selenium at SW-3 (a seep in Pennsylvania just below the earthen dam)(exceedances of nonpriority pollutants under PA WQC, such as aluminum, boron, and barium, were not tracked at on-site points). See Chart 3.

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MEDIUM</th>
<th>STANDARD</th>
<th>SAMPLING DATES</th>
<th>#EXCEEDANCES</th>
<th># WELLS</th>
<th>HIGHEST EXCEEDANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td>Groundwater</td>
<td>PA MCL: 1</td>
<td>1993–2008</td>
<td>6</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>Groundwater</td>
<td>SMCL: 0.05</td>
<td>2008</td>
<td>1</td>
<td>1</td>
<td>2.37</td>
</tr>
<tr>
<td>Selenium (mg/L)</td>
<td>Surface Water</td>
<td>PA CCC: 0.0046</td>
<td>2004</td>
<td>2</td>
<td>1</td>
<td>0.0929</td>
</tr>
</tbody>
</table>

In addition, a monitoring well that appears to be monitoring surface water of the impoundment itself (SW-7) measured exceedances of the PA CCC for arsenic (0.010 mg/L) twice in 2009–2010, with readings of 0.023 and 0.025 mg/L, and it also measured at least six exceedances of the boron PA CCC (1.6 mg/L), with a high reading of 15.7 mg/L. Outfall 507 measured an exceedance of the hexavalent chromium PA CCC (0.016 mg/L), with a reading of 0.026 mg/L in 1998. In addition, thallium measured 0.015 mg/L in 1998 at Outfall 507, exceeding the PA CCC (0.013 mg/L) and the Health Criteria (0.00024 mg/L).

Constituents Involved
Aluminum, antimony, arsenic, barium, boron, cadmium, calcium, chloride, chromium (hexavalent), fluoride, iron, lead, manganese, pH, selenium, sodium, sulfate, total dissolved solids, total suspended solids, thallium, turbidity

At-Risk Population
At least 22 private wells have already been contaminated with CCW pollutants above the primary or secondary MCLs, including the township building’s well. FirstEnergy has already purchased several of these contaminated properties and/or supplied the residents thereof with an alternate drinking water supply. Because Greene Township has no public water supplies, every single resident—2,705 people, according to 2000 census data—is drinking private well water. In addition, there are many affected citizens in West Virginia, although comprehensive well data was unavailable for this region. Water degradation may also be migrating across the Ohio River into Ohio, but the community there is on public water.

Incident and Date Damage Occurred / Identified
The Pennsylvania Department of Environmental Protection (PADEP) has long documented the contamination flowing from the Little Blue surface impoundment. From at least 1989 to the present day, FirstEnergy (and previously, Penn Power) has been exceeding permit limits and both State and federal drinking water and surface water standards due to the irresponsible disposal of CCW in the Little Blue impoundment.

Admitted Damage
On February 16, 2010, PADEP sent a letter to FirstEnergy regarding high arsenic levels at 10 groundwater and surface water monitoring points, stating, “According to the data, elevated levels of Arsenic were detected in Monitoring Wells MW-13A, MW-15B, MW-16C, MW-17A, MW-20B, MW-23B, SW-5, SW-7, S-17, and S-31” (PADEP, 2010) (emphasis added). In a response letter dated February 24, 2010, FirstEnergy acknowledged the arsenic levels and further stated: “As you will recall, the DEP prepared a similar letter dated December 20, 2007
regarding detectable concentrations of arsenic reported in four monitoring points during the third quarter 2007 sampling event” (FirstEnergy, 2010). FirstEnergy’s environmental consultants re-tested arsenic levels to determine whether interference had been causing arsenic spikes, but found that the re-tested “results were comparable.”

In 2009, USEPA and FirstEnergy ranked Little Blue as a “High” hazard dam on the National Inventory of Dams, meaning that a failure of the dam “will probably cause loss of human life.” (USEPA, 2009).

In 2009, an Annual Operations report prepared by environmental consultants for FirstEnergy states:

Sharp increases in sulfate, chloride, sodium, and specific conductance at MW-6 indicate early signs of supernatant impacts. This well is located along Lewis Road on the southwestern side of the impoundment, and has served as a background well. Due to the placement of CCB in this portion of the impoundment, this well is now located within several feet of the impoundment. Shallow impacted groundwater may be migrating along the soil-bedrock interface or through weathered bedrock in the vicinity of this well and may be short circuiting to deeper zones. Because this well is one of the original monitoring wells installed at the Site (1974), it does not meet current standards for well construction and will be replaced with a new well to prevent the migration of impacted water to deeper zones.

(CEC, 2009). The same 2009 report states that on the ridge east of the impoundment, “Monitoring wells MW-3A and MW-14AR continues[sic] to show increasing concentrations of sulfate, chloride, and sodium indicating possible early signs of supernatant impact.” FirstEnergy’s consultants go on to state:

On the western side of the impoundment, early signs of supernatant impacts may be evident along Johnsonville Road. At MW-7A and MW-7B, sulfate, chloride, calcium and specific conductance all showed distinct increasing trends in 2008, indicating possible supernatant impacts. . . . Similarly, increasing sulfate concentrations and analysis of the Piper diagrams at wells MW-24 and DW69 indicate possible supernatant impacts. Spring S-30 continues to display increases in sulfate, chloride, sodium, calcium, magnesium and specific conductance, further suggesting signs of supernatant impacts. In addition, newly identified springs in Lawrenceville at locations down gradient of springs S-30 and S-31 appear to display impacts from the impoundment.

The 2007 Annual Report prepared by FirstEnergy’s environmental consultants labels each of the following as a “supernatant impacted well”: MW-1; MW-2R; MW-3B; MW-9BR; MW-12B; MW-12C; MW-13A; MW-13B; MW-15B; MW-16A; MW-17A; MW-17B; MW-22B; MW-23A; MW-24; SW-3; SW-4; SW-5; S-9A; S-15; and S-17 (CEC, 2007).

In the 1996 Consent Order and Agreement, Penn Power (the owner of Little Blue prior to FirstEnergy) and PADEP admit that “Existing groundwater monitoring data indicate slight groundwater impact from Little Blue Run supernatant. . . . relative to background. All quantifiable impacts are of secondary maximum contaminant level (“SMCL”) or indicator parameters, including Sodium, Calcium, Chloride, and Sulfate” (PADEP, 1996).

In 1994, FirstEnergy was required to provide a water supply to a private residence, and a PADEP letter to Penn Power admits that the impoundment contaminated and made unusable a private well (PADEP, 1994a):

This result indicates a continuing upward trend in levels of sodium, chloride and sulfate which has persisted since 1991. . . . This trend represents a measurable increase in the concentration of these contaminants and therefore is defined as groundwater degradation. Since the groundwater gradient is probably from the impoundment supernatant at elevation of 1050’ toward the [XXXX] well water elevation at approximately 985’, it is very probable that the impoundment is responsible for this adverse effect on the water supply.
IN HARM’S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

This letter is notice from the Department that the operator, Pennsylvania Power Company, is responsible for adversely affecting the water supply of Mr. [XXXX]."

A 1994 letter from PADEP to the environmental consulting firm states, “[t]his impoundment is affecting groundwater over a large area with multiple aquifers.” (PADEP, 1994b) (emphasis added).

As early as 1989, PADEP admitted that chloride measured at 3,530 mg/L (more than 14 times the SMCL of 250) in groundwater is “abnormally high,” that calcium levels were “elevated” in three groundwater wells, that both “can be traced to leaching of surface water through the waste” at the impoundment, and that “elevated” levels of calcium “can be associated with the waste disposed at Little Blue.” (PADEP, 1989b) (emphasis added).

Other Incidents

In 2009, dry conditions on the surface of the impoundment covered nearby residents’ homes in a layer of coal ash fugitive dust, prompting an NOV (PADEP, 2009).

In 2007, a PADEP site inspector “noted a white discharge from spring S-2 on the hillside east of the dam face. Photos were taken of the discharge. There was a rotten egg odor in the vicinity of the open channel next to the main access road” (PADEP, 2007).

Twenty gallons of lime slurry discharged into the Ohio River from the Little Blue impoundment in June 1994, although the constituents in the discharge are unknown (Penn Power, 1994a).

In January 1994, 800 gallons of scrubber sludge discharged to the Ohio River from the impoundment, although the constituents in the discharge are unknown. There was also a seepage into Mill Creek in March 1994, the size and constituents of which are unknown (Penn Power, 1994b).

A thick layer of coal ash dust was released from the surface of the Little Blue impoundment as fugitive dust from January 30 to February 4, 1993, and PADEP issued a Notice of Violation for violations of Sections 6.1(a), 6.1(b), and 8 of the Air Pollution Control Act, and Sections 123.1 and 123.2 of 25 Pa. Code §§ 123.1(a) and 123.2 (PADEP, 1993).

A 1991 inspection report noted a milky-white discharge from the distilling pond and from NPDES Outfall 001, and marked “non-compliance” with regard to “Operation in accordance with approved plans” and for “Leachate treatment facilities being operated properly.” (PADEP, 1991a). The pH was measured from 8.7 to 9.4. Id. A Notice of Violation issued cited violations of sections 302(b)(3), 610(2), and 610(4) of the Pennsylvania Solid Waste Management Act and sections 301 and 307(c) of the Clean Streams Law (CLS) (PADEP, 1991c). The NOV (PADEP, 1991) stated that a:

[W]ater discharge coming from Little Blue Run development area fly ash disposal landfill was discolored and the bottom of the distilling basin was covered with a white sediment. Water samples were taken at the NPDES Permit No. PA0027260, Outfall 001 discharge point. The analysis from these samples showed total suspended solids at 194 mg/l (maximum limit 60 mg/l) and pH 10.5 (maximum limit pH 9), both over the NPDES permit discharge limits and in violation of the above mentioned sections of the PSWMA and the CSL.

On August 30, 1991, 100 gallons of CCW slurry from Little Blue spilled into the sewer (PADEP, 1991b).

An unpermitted discharge violation was reported by Penn Power to PADEP in July 1991 (PADEP, 1991d).

A 1989 Consent Assessment of Civil Penalty stated “[l]eakage at the closed valves of the supernatant/river return pumps resulted in a discharge to Outfall 001. Water samples taken at Outfall 001 discharge point showed suspended solids of 194 mg/l and a pH of 10.5, both which exceed the NPDES permit limits of 60 mg/l for
suspended solids and 9 pH.” PADEP assessed a $4,000 penalty for this discharge into Mill Creek, but Penn Power paid only $2,500 with a Consent Agreement from PADEP (Penn Power, 1989).

Regulatory Actions

PADEP’s regulatory actions have not been aimed at a comprehensive solution to address the ongoing contamination and seepage from Little Blue; rather, PADEP’s actions have been aimed at patching small seeps throughout the years. Selected PADEP actions for the Little Blue impoundment include:

- **February 16, 2010:** PADEP sent a letter to FirstEnergy requesting re-sampling of ten groundwater and surface water monitoring points with high arsenic levels and stating, “According to the data, elevated levels of Arsenic were detected in Monitoring Wells MW-13A, MW-15B, MW-16C, MW-17A, MW-20B, MW-23B, SW-5, SW-7, S-17, and S-31” (PADEP, 2010).
- **March 12, 2009:** PADEP issued an NOV for a dusting event that covered many residents’ properties with a layer of coal ash on March 4, 2009 (PADEP, 2009).
- **October 21, 2008:** PADEP sent FirstEnergy a letter stating: “The Department’s results indicate that sodium and chloride levels are elevated indicating that the surface water point has been impacted by leachate from the impoundment,” and required FirstEnergy to select one of three remediation options (PADEP, 2008). As of mid-2010, it is still not clear what remediation option, if any, FirstEnergy has undertaken at Little Blue.
- **Sept. 19, 2003:** PADEP inspection report cites FirstEnergy because “fly ash sludge” was “disposed outside the permit area” in violation of Pennsylvania law; an NOV was issued on September 23, 2003 (PADEP, 2003).
- **June 21, 1994:** Settlement with PADEP for groundwater contamination; penalty amount N/A (PADEP, 1994a).
- **Jan. 30–Feb. 4, 1993:** PADEP issued an NOV for fugitive dust violations, no penalty paid (PADEP, 1993).
- **Sept. 3, 1991:** PADEP issued an NOV for discoloration of discharge; no penalty paid (PADEP, 1991c).
- **July 31, 1989:** PADEP issued an NOV for suspended solids and pH exceedances, $2,500 penalty paid (Penn Power, 1996).

FirstEnergy was required to post a $22,219,252 bond for financial assurance in 2006. (PADEP, 2006 (2)).

It is important to note that, through a Memorandum of Understanding entered into in 2006 (when the impoundment was expanded) by PADEP and the West Virginia DEP, PADEP is the lead permitting and enforcement agency for Little Blue, including those parts of Little Blue that lie in West Virginia (WVDEP, 2006).

In addition, PADEP allowed First Energy to obtain a solid waste permit without “mandatory trigger abatement levels” for boron. “Trigger levels” were also removed and replaced with only monitoring requirements for arsenic, cadmium, chromium, copper, lead, magnesium, mercury, selenium, silver, zinc, ammonia-nitrogen, bicarbonate, calcium, chemical oxygen demand, chloride, iron, manganese, pH, potassium, sodium, specific conductance, sulfate, TDS, alkalinity, total organic carbon, and turbidity by the PADEP. Compare (PADEP, 1997b with PADEP, 1997c). This was supposedly done “because the conditions of the site do not reflect the need for abatement.” (PADEP, 1997a).

Wastes Present

Flue gas desulfurization sludge, fly ash

Active or Inactive Waste Management Unit

Active. FirstEnergy disposes of about 1–3 million gallons of coal ash a day into Little Blue.
Type(s) of Waste Management Unit

“High” hazard 900–1,300-acre coal ash surface impoundment without a liner. The liner requirement was waived upon promulgation of PA coal ash regulations in 1992, and again with the expansion of the impoundment in 2006, for which FirstEnergy secured a “demonstration” permit. The CCW in Little Blue is kept from spilling into the Ohio River by a 400 foot high earthen dam, the largest of its type in the eastern United States.

Hydrogeologic Conditions

Groundwater monitoring at the Little Blue impoundment identified eight aquifers:

- Shallow Bedrock: Middle Glenshaw Aquifer; Lower Glenshaw Aquifer; Freeport Aquifer; Worthington Aquifer;
- Intermediate Bedrock: Kittanning Aquifer; Clarion Aquifer;
- Deep Bedrock: Homewood Aquifer; and
- Surficial/Unconsolidated: The Regolith and Alluvium Aquifer

(Penn Power, 1997b, see also PADEP, 1996). “Groundwater flow patterns at Little Blue Run are a complex, three-dimensional field because of the high relief and complex stratigraphy of the area.” Id. The company admitted, “These units are not highly permeable, but are more permeable than other units in the stratigraphic series” (Penn Power, 1997b).

The company also stated, “the facility could potentially affect water supplies in the Mill Creek Valley to the east, the Lawrenceville area to the west, and Coffey Road to the south” (Penn Power, 1997b).

The depth in the Glenshaw Aquifer, the “top most saturated stratigraphic unit across the site,” ranged from 944.7 to 1093.47 ft MSL (Penn Power, 1997c). There are also several small mines below the impoundment in the Lower Kittanning and Freeport seams, which were backfilled with soil or fly ash cement during the impoundment’s construction. (Penn Power, 1997b).

Also of note is that Penn Power identified and admitted discharging to three surface water receptors in the vicinity of Little Blue, and stated that groundwater from the impoundment “discharges to springs, which enter Mill Creek, Little Blue Run, and the Ohio River” (Penn Power, 1997c). The impoundment discharges to Mill Creek about 100 yards before the confluence of Mill Creek and the Ohio River. Id.

Berea Sandstone lies 600 feet below the base of the impoundment (Rose, 2004).

Additional Narrative

As of 1996, the 2,460 megawatt Bruce Mansfield plant could generate as much as four million gallons of coal ash a day, all of which is pumped through a seven mile pipeline into the Little Blue surface impoundment (PADEP, 1996). “Constructed between 1973 and 1977, Little Blue Run comprises approximately 1,300 acres in a steep-walled valley.” Id. “A 9 million cubic yard earth and rockfill dam, the largest embankment dam of its type in the Eastern United States, serves as the enclosure for the waste disposal facility.” Id. The impoundment spans two states and its waste permit authorizes a dump area of 1,694.9 acres. (PADEP, 2006a).

The site was expanded in 2006, and, including the buffer areas owned by FirstEnergy, currently occupies over 18% of the landmass of Greene Township (not to mention the many acres in West Virginia). In order to expand the 1,300-acre impoundment, FirstEnergy secured a “demonstration” permit to determine whether specific uses of coal ash solids and geo-tube technology could stabilize the waste site and extend the life of the unit so as to avoid having to expand into greenfield sites. Despite this statement and despite its already increased size, a new 200- to 1,200-acre expansion (the “Little Blue East” site) is being proposed adjacent to the current impoundment (Bauder, 2010c).
Little Blue has a Clean Water Act National Pollutant Discharge Elimination System (NPDES) and Pennsylvania Clean Streams Law permit, Permit No. PA0027481, and a Solid Waste Permit, No. 300558. However, PADEP has granted this site a waiver of the Pennsylvania residual waste regulations that require liners, leachate collection systems, and siting restrictions (PADEP, 1996). The impoundment was thereby also exempted from the requirement to retrofit for a 25-year 24-hour flood (Id.).

Bottom ash has also been spread on roads for “dust suppression” since at least 1987 (Penn Power, 1997a; PADEP, 1987).

As part of its expansion efforts, FirstEnergy is currently asking residents living near Little Blue to sign wavers authorizing FirstEnergy to be excused from setbacks in Pennsylvania regulations (Bauder, 2010a).

Sources

PADEP. 1997b. PADEP, Form 13A, Modification to Solid Waste Disposal and/or Processing Permit, at 3–4 (Dec. 3, 1997).

PADEP. 1997c. PADEP, Form 13A, Modification to Solid Waste Disposal and/or Processing Permit, at 6–7 (Sept. 25, 1997).

Entity/Company - Location
Allegheny Energy Supply Company – Hatfield’s Ferry Power Station
2907 East Royfurman Highway
Masontown, PA 15461
Greene County
Latitude: 39.853611 Longitude: -79.946389

Determination
Demonstrated damage to groundwater moving off-site and to off-site surface water and aquatic life (in Little Whitely Creek and tributaries)

Probable Cause(s)
Leaching from the coal combustion waste (CCW) landfill to groundwater and discharges of CCW leachate into streams

Summary
An unlined CCW landfill located off-property from the Hatfield’s Ferry Power Plant has contaminated groundwater, polluted surface water, and damaged aquatic ecosystems since at least 2001. Federal groundwater Maximum Contaminant Levels (MCLs) standards for arsenic, aluminum, boron, chromium, manganese, molybdenum, sulfate, and total dissolved solids (TDS) have been exceeded since at least 2001. Concentrations of groundwater contaminants mirror those in CCW leachate samples from the landfill collected at the same time. The horizontal extent of contamination has not yet been defined.
For example, since at least 2005, arsenic has repeatedly exceeded the MCL in three wells hundreds of yards south and east of the landfill, with total concentrations as much as 342 times the MCL and dissolved concentrations more than 11 times the MCL. Allegheny Energy’s wetland treatment system for CCW leachate is ineffective at treating several parameters indicative of CCW leachate – notably aluminum, boron, manganese, molybdenum, sulfate, thallium, and TDS – resulting violations of permit limits and continued harmful discharges to the receiving stream in violation of Pennsylvania Water Quality Criteria (WQC) for boron. In addition, a stream habitat and macroinvertebrate survey of four streams emanating from the landfill property shows that two streams closest to the CCW landfill are impaired by CCW leachate from the landfill.

Test of Proof
The Hatfield’s Ferry CCW landfill was permitted as a 40-acre unlined disposal site in May, 1984. From 1984 until 2001, CCW leachate and shallow groundwater that contacted CCW was directed, without any treatment, to an earthen impoundment, and then discharged into an unnamed tributary of Little Whiteley Creek. The Pennsylvania Department of Environmental Protection (PADEP) determined that the CCW leachate discharges were the causes of exceedances of the effluent limitations in the NPDES permit for the landfill (Allegheny, 2006b). Allegheny Energy began operating a passive wetland treatment system for CCW leachate in Spring 2001. The wetland treatment system was designed to remove or reduce concentrations of iron, aluminum, manganese, and total suspended solids and to control pH (Allegheny, 2006b) – but was not specifically designed to treat other problematic constituents in CCW leachate. The PADEP issued a Consent Order and Agreement in March 2008 (PADEP, 2008) because of continued violations of aluminum, manganese, and thallium NPDES effluent limits from November 2003 to August 2007 associated with the wetland treatment system (Allegheny, 2008). Maximum concentrations during that period, compared to the NPDES permit limits, are:

- **Aluminum** – a 3.459 mg/L concentration versus a daily maximum permit limit of 1.2 mg/L permit limit; a 0.962 mg/L monthly average concentration versus a 0.6 mg/L permit limit for monthly average (April 2007).
- **Manganese** – a 2.623 mg/L concentration versus a daily maximum limit of 2.4 mg/L (Feb. 2004); a 1.45 mg/L monthly average concentration versus a 1.2 mg/L limit for monthly average (January 2004).
- **Thallium** – a 0.0062 mg/L concentration versus a daily maximum limit of 0.0042 mg/L; a 0.0028 mg/L monthly average concentration versus a 0.0021 mg/L limit for monthly average (August 2005).

The PADEP in-stream Human Health Water Quality Criteria for thallium is 0.00024 mg/L, which is an order of magnitude less than the 0.0021 mg/L monthly average and 0.0042 mg/L daily maximum concentrations allowed in the NPDES permit. The wetland treatment system discharge is likely a large percentage of the total flow volume of the unnamed tributary of Little Whiteley Creek, with little dilution afforded in its receiving waters. This raises concern that the concentrations violating the permit limits from 2003 to 2007, if not the permit limits themselves, might allow for thallium to be discharged in concentrations causing regular exceedances of the human health criterion for thallium (0.00024 mg/L) in the unnamed tributary.

Although the 2008 Consent Order addressed NPDES permit exceedances for thallium, the CCW landfill permit does not require that thallium be analyzed in groundwater, in CCW leachate, or at surface water monitoring points. Thallium testing (weekly) is only required for NPDES monitoring associated with the discharge from the wetland treatment system.

Monitoring results for the discharges from CCW leachate collection sumps to the treatment system and surface water monitoring stations were reviewed for April / May 2002 data (Allegheny, 2002), one year after the treatment system was installed, and for April / May 2006 (Allegheny, 2006a). The results show that discharges to the unnamed tributary of Little Whiteley Creek from the wetland treatment system are still indicative of inadequately treated CCW leachate.
Background concentrations of CCW parameters in Little Whiteley Creek approximately 200 feet upstream from its confluence with the unnamed tributary that originates at the landfill (LW-1U), the unnamed tributary prior to reaching Little Whiteley Creek (UT-1D), and the combined flow downstream in Little Whiteley Creek (LW-2D), were compared in the chart below. The results showed concentrations exceeding the PA WQC chronic concentration (Criteria Continuous Concentration, or CCC) for boron (1.6 mg/L) in the receiving stream (the unnamed tributary) by 2.6 to 5.3 times which became worse in 2006 and 2008 despite treatment of the leachate in the wetland system. In addition, all three years of boron measurements in this stream also exceeded the U.S. Environmental Protection Agency’s (USEPA) Child Health Advisory for boron (3 mg/L), with the 2006 and 2008 concentrations more than twice as high as this Advisory and also exceeding the Life-time Advisory for boron of 6 mg/L.

There were also high and increasing concentrations of molybdenum, sulfate, and TDS (for which there are no PA WQC) in this receiving stream, and there were elevated concentrations of all of these pollutants, including boron, in Little Whitely Creek downstream of the confluence with the unnamed tributary. Finally there were increasing concentrations of calcium and magnesium which are highly soluble parameters frequently found in coal ashes. Note in the table below:

* LW-1U is upstream Little Whiteley Creek (reference sample).
* UT-1D is the unnamed tributary from the landfill.
* LW-2D is downstream from the unnamed landfill tributary’s confluence with Little Whiteley Creek.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>April / May 2002 (mg/L)</th>
<th>April / May 2006 (mg/L)</th>
<th>May 2008 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LW-1U Upstream</td>
<td>UT-1D from landfill</td>
<td>LW-2D Downstream</td>
</tr>
<tr>
<td>Boron</td>
<td>0.04</td>
<td>0.142</td>
<td>0.142</td>
</tr>
<tr>
<td>Calcium</td>
<td>36</td>
<td>42.2</td>
<td>42.2</td>
</tr>
<tr>
<td>Magnesium</td>
<td>9.8</td>
<td>12.54</td>
<td>12.54</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.251</td>
<td>0.288</td>
<td>0.288</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>N.D</td>
<td>0.097</td>
<td>N.D</td>
</tr>
<tr>
<td>Sulfate</td>
<td>53.3</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>TDS</td>
<td>216</td>
<td>216</td>
<td>216</td>
</tr>
<tr>
<td>Alkalinity (as CaCO₃)</td>
<td>72.2</td>
<td>80.4</td>
<td>80.4</td>
</tr>
</tbody>
</table>

While there is no numeric water quality criteria for molybdenum in Pennsylvania surface waters, the concentrations in the unnamed tributary from the landfill readily exceed USEPA’s Health Advisory for ingestion of molybdenum in drinking water. All three years of molybdenum measurements exceed both the Child 10-day (0.080 mg/L) and Lifetime Health Advisory (0.040 mg/L) limits, with the 2006 and 2008 concentrations exceeding the Child Health Advisory by 6 times and the Lifetime Health Advisory by more than 12 times.

In addition, there are four perennial streams that emanate from shallow groundwater around the CCW landfill and flow off-site into larger streams that have a protected use for aquatic life (GAI, 2006). A 2006 habitat and stream survey shows that CCW leachate from Phases 1 and 2 of the landfill have degraded the two streams closest to the landfill. Of the four streams, the stream sections with the healthiest benthic macroinvertibrate community structure were the downstream portions of the unnamed tributary to the southwest (discharges to Little...
Whitely Creek north of the unnamed tributary that the landfill flows into) and the unnamed tributary to the southeast (discharges to the Monongahela River) – both being the farthest from the landfill. The entire unnamed tributary stream section that receives treated (and historically untreated) leachate from the landfill is impaired, containing only organisms that are tolerant to pollution and having a concreted bottom from an unknown chemical compound. The unnamed tributary nearest Phase 2 of the landfill and along the landfill haul road was also severely impaired, having only organisms that are tolerant to pollution. GAI Consultants, Inc. concluded that both unnamed tributaries nearest the CCW landfill are indicative of polluted water or disturbed habitat.

Surface water and stream assessment results show that discharges from the landfill violate PADEP regulations setting general water criteria for protecting surface waters. Those criteria do not allow “point or non-point source discharges in concentrations or amounts sufficient to be inimical or harmful to the water uses to be protected or to human, animal, plant, or aquatic life” or for a substance to “to settle or form deposits.”

In addition, Allegheny Energy monitors discharges from each CCW leachate collection sump annually as a condition of its landfill permit. The data show what parameters and concentrations were likely discharged continually into the unnamed tributary from the beginning of the landfill’s operation in 1984 to 2001, before the wetland treatment system was installed. When the leachate sump data are compared to the upstream Little Whiteley Creek upstream reference sample (LW-1U, see table above), the concentrations are substantially higher for every parameter at the sumps, as follows. For reference, if PA WQC were compared to the leachate sump water (to which PA WQC would not apply), concentrations of boron would be exceeding the CCC by at least a factor of 10 in every single reading in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>April / May 2002 CCW Leachate Sump Results (mg/L)</th>
<th>April / May 2006 CCW Leachate Sump Results (mg/L)</th>
<th>May 2009 CCW Leachate Sump Results (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1</td>
<td>Phase 2</td>
<td>Phase 1</td>
</tr>
<tr>
<td>Boron</td>
<td>16.74</td>
<td>18.37</td>
<td>16.91</td>
</tr>
<tr>
<td>Calcium</td>
<td>539</td>
<td>549</td>
<td>471</td>
</tr>
<tr>
<td>Magnesium</td>
<td>275</td>
<td>218</td>
<td>327</td>
</tr>
<tr>
<td>Manganese</td>
<td>13.12</td>
<td>5.13</td>
<td>11.59</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.428</td>
<td>1.013</td>
<td>0.039</td>
</tr>
<tr>
<td>Sulfate</td>
<td>2,275</td>
<td>2,260</td>
<td>2,328</td>
</tr>
<tr>
<td>TDS</td>
<td>3,843</td>
<td>3,724</td>
<td>3,938</td>
</tr>
<tr>
<td>Alkalinity (as CaCO3)</td>
<td>349</td>
<td>289</td>
<td>355</td>
</tr>
</tbody>
</table>

Allegheny Energy conducts groundwater monitoring on a semi-annual basis; however, it only samples metals once per year. With the exception of molybdenum, the groundwater results are generally similar to the CCW leachate sump data and samples of the tributary downstream from the leachate treatment wetland discharge – indicating that the groundwater has been substantially affected by CCW leachate. A summary of CCW parameter results for the April / May 2006 and the May 2009 groundwater monitoring event for shallow mine spoil aquifer and rind aquifer wells downgradient of CCW at Phases 1 and 2 is as follows:
Concentrations of boron exceeded the U. S. Environmental Protection Agency’s (USEPA) Health Advisory; manganese exceeded the SMCL in four of five shallow wells in two aquifers; and sulfate and TDS exceeded the SMCLs in all five of the wells. Groundwater results for five Benwood Limestone aquifer wells for the same years (the deepest aquifer on-site, MW-201C, MW-202C, MW-203C, MW-5C, and MW-208C) were not tabulated above but they contained no boron concentration greater than 0.268 mg/L; no sulfate concentration greater than 171 mg/L; and the highest TDS concentration was 1,766 mg/L – all three parameters at average concentrations substantially less than those in the overlying rind and shallow mine spoil aquifers.

Allegheny Energy has concluded that shallow groundwater flow directions mimic the ground surface. The only wells installed in the mine spoil aquifer, MW-206A and MW-207A, are located just south of the Phase 1 and 2 disposal areas but north of Phase 3 and the former Hartley mine ash disposal area, and are used as “upgradient” wells for the landfill monitoring program. Although Allegheny Energy has concluded, according to their hydrogeologic characterization, that groundwater in the mine spoil aquifer flows south-to-north and intermixes with the rind aquifer to the north (wells MW-202B, MW-203B, and MW-204B) (Allegheny, 2006b), wells MW-206A and MW-207A are actually situated downgradient of Phase 3 of the landfill and at least in part, downgradient from Phases 1 and 2 of the landfill. Allegheny Energy, also the generator of the coal ash placed in the Hartley mine on the south side of the CCW landfill, stated in an August 20, 1997 revision to an application to modify the permit for the landfill, that the elevated concentrations of boron in MW-206A and MW-207A were “due to the fact that fly ash has been co-disposed with mine spoil in the upgradient area, in addition to the permitted disposal area” (CATF, 2007).

Molybdenum, a classic coal ash indicator metal, has been found in on-site wells near the CCW landfill and downgradient from the former Hartley mine coal ash disposal site – in addition to being in surface waters leaving the permitted landfill and in leachate. The concentration of molybdenum in MW-1, located downgradient of the mine disposal site, was 0.190 mg/L in September 1998 and 0.0115 mg/L in MW-207A in August 1997 (CATF, 2007).

Given that the groundwater at MW-206A and MW-207A has been contaminated with ash constituents, there is no unaffected upgradient background well with which to compare downgradient landfill well results. MW-206A and MW-207A are situated where groundwater flows radially to the west, north, and east from the crest of the landfill property (Allegheny, 2006b), in addition to being downgradient from a portion of the strip mine where ash was placed. Neither the easterly nor westerly groundwater flow component is completely monitored.

As a condition of the Phase 3 landfill expansion, six additional rind aquifer monitoring wells were installed downgradient of a new lined leachate storage impoundment northeast of Phases 1 and 2, near the landfill haul...
road, and south of Phase 3 near the former Hartley Mine coal ash disposal area. None of the new wells were located east or west of Phase 3 in the indicated direction of groundwater flow that mimics the ground surface, according to Allegheny. A summary of the data collected in December 2009 for the new wells shows that the highest contamination in the new wells is downgradient of Phases 1 and 2 of the landfill and the new lined leachate collection sump for Phase 3 (Allegheny, 2010b), as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>1.23</td>
<td>7.13</td>
<td>0.082</td>
<td>0.282</td>
<td>1.7</td>
<td>79.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.002</td>
<td>0.184</td>
<td><0.002</td>
<td><0.002</td>
<td>0.040</td>
<td>1.68</td>
<td>0.01</td>
</tr>
<tr>
<td>Boron</td>
<td>3.031</td>
<td>6.12</td>
<td>12.66</td>
<td>7.38</td>
<td>22.02</td>
<td>31.7</td>
<td>6</td>
</tr>
<tr>
<td>Calcium</td>
<td>71</td>
<td>233</td>
<td>412</td>
<td>325</td>
<td>664</td>
<td>879</td>
<td>-</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.006</td>
<td>0.007</td>
<td><0.002</td>
<td><0.002</td>
<td>0.104</td>
<td>illegible</td>
<td>0.1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>28</td>
<td>14</td>
<td>300</td>
<td>91</td>
<td>1.66</td>
<td>18.8</td>
<td>-</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.183</td>
<td>0.55</td>
<td>2.5</td>
<td>29</td>
<td>0.018</td>
<td>0.548</td>
<td>0.05</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><0.001</td>
<td>0.174</td>
<td>0.002</td>
<td>0.002</td>
<td>0.46</td>
<td>1.31</td>
<td>0.04</td>
</tr>
<tr>
<td>Sulfate</td>
<td>769</td>
<td>323</td>
<td>1,999</td>
<td>1,136</td>
<td>1,480</td>
<td>1,512</td>
<td>250</td>
</tr>
<tr>
<td>TDS</td>
<td>1,712</td>
<td>702</td>
<td>3,424</td>
<td>1,816</td>
<td>2,380</td>
<td>2,412</td>
<td>500</td>
</tr>
<tr>
<td>Alkalinity (as CaCO₃)</td>
<td>545</td>
<td>210</td>
<td>371</td>
<td>80</td>
<td><5</td>
<td><5</td>
<td>-</td>
</tr>
</tbody>
</table>

Samples collected from well MW-213A, downgradient of coal ash in the Hartley Mine and more than a thousand yards south of Phases 1 and 2 of the landfill and from MW-217A, and MW-218A, more than 500 yards east of waste placement areas in the landfill, show that arsenic concentrations well above the MCL have been measured beyond the site in downgradient groundwater since at least 2005 (Allegheny, 2010a). Total arsenic concentrations exceeded the MCL in 19 of 19 sampling events from 2005 to 2010 for these three wells; dissolved arsenic concentrations in MW-213A exceeded the MCL 17 of 19 events; and dissolved arsenic in MW-217A and MW-218A exceeded the MCL 19 of 19 events. The range of arsenic concentrations in these wells from September 15, 2005 to the March 3, 2010 sampling event is as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MW-213A (mg/L)</th>
<th>MW-217A (mg/L)</th>
<th>MW-218A (mg/L)</th>
<th>Standard (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Arsenic</td>
<td>0.089 – 0.537</td>
<td>0.036 – 0.8396</td>
<td>0.077 – 3.419</td>
<td>0.010</td>
</tr>
<tr>
<td>Dissolved Arsenic</td>
<td>0.008 – 0.0428</td>
<td>0.0131 – 0.0353</td>
<td>0.0276 – 0.1136</td>
<td>0.010</td>
</tr>
</tbody>
</table>

The concentrations of CCW parameters in MW-217A and MW-218A and their locations show an easterly groundwater flow direction beyond the landfill – a flow direction that was not monitored until 2005. This easterly flow is still not monitored for the newest phase of the landfill (Phase 3). Further, there are no wells downgradient from MW-217A and MW-218A defining the horizontal extent of the contamination towards the Monongahela River from Phases 1 and 2.

Constituents Involved
Aluminum, arsenic, boron, chromium, iron, manganese, molybdenum, thallium, total dissolved solids, and sulfate

At Risk Population
There are 7 private drinking water wells and one public drinking water well within a two-mile radius of the Hatfield’s Ferry CCW disposal areas. Well log locations were obtained from Pennsylvania’s Groundwater.
Database (PAGWIS). This data set is updated on a county by county basis once every six months and only includes well records with latitude and longitude coordinates assigned to the well. Because many private wells in Pennsylvania may be registered with a township but not necessarily the Commonwealth, this data is likely incomplete.

Incident and Date Damage Occurred / Identified
Violations of NPDES permit limits were first cited in November 2003, exceedances of the PA WQC for boron have been recorded since at least 2001, and exceedances of MCLs and health advisories in groundwater have been measured from at least as far back as April 2001.

Regulatory Actions
PADEP entered into a Consent Order and Agreement (COA) with Allegheny Energy in March 2008 because of NPDES permit violations (PADEP, 2008). Specifically, from November 2003 to August 2007, Allegheny Energy violated permit effluents limits for aluminum, manganese, and thallium in its discharge to an unnamed tributary of Little Whiteley Creek from its wetland treatment system (Allegheny, 2008). The COA required that Allegheny Energy submit a corrective action plan within 180 days to achieve permit limitations in all affected outfalls. The COA also allows Allegheny Energy two years to implement corrective actions for the wetland discharges once the proposed corrective action is approved or once the Phase 3 landfill expansion is issued, whichever is later.

PADEP received a corrective action plan from Allegheny Energy on September 24, 2008, which stated that the permit exceedances were due to leachate overflows from the sedimentation basin due to force main malfunctions, stormwater containing fly ash during heavy rains, and the inherent “analytical result variance” of the thallium
analytical method itself. None of the corrective actions were blamed on the inability of the wetland treatment system to treat CCW. The substance and effectiveness of Allegheny Energy’s measures to stop continued violations of NPDES permit limits are still unclear.

Wastes Present

Fly ash, bottom ash, pyrites, wastewater treatment sludges, pond sediments, refractory materials, and sandblasting media from the Hatfield’s Ferry Power Plant. In addition, flue gas desulfurization (FGD) sludges from the plant have been disposed in the landfill beginning in approximately 2007 (PADEP, 2007).

Type(s) of Waste Management Unit

The Hatfield’s Ferry plant began operating in 1969, and PADEP issued the first CCW landfill permit for the site on May 7, 1984 (PADEP, 2007). The landfill permit authorized the disposal of CCW within a 40-acre unlined area designated as Phase 1 and Phase 2. Allegheny Energy also disposed of CCW in the Hartley strip mine, located on adjoining property to the south. (CATF, 2007)

CCW Landfill Phases 1 and 2 were constructed with a leachate collection system to gather water infiltrating through the CCW and an under-drain system to remove groundwater from the coal ash (Allegheny, 2006b). The underdrain system was designed to “collect and segregate springs and seep flow from the former strip mine area from the CCB (coal combustion byproduct) leachate” (Allegheny, 2008). Leachate and shallow groundwater collected from Phases 1 and 2 are discharged into a tributary to Little Whiteley Creek after treatment in the wetland treatment system which consists of one equalization basin, four geosynthetic clay lined wetland cells, five rock drain cells, and a sedimentation pond.

In 1998, the PADEP re-permitted the site, expanding it to 187 acres, allowing additional waste streams to be disposed there, expanding the monitoring system, and authorizing operation of the landfill through March 2008.

The Hatfield’s Ferry Plant added FGD units (scrubbers) in 2007, resulting in 1.8 million more tons of CCW being sent annually to the landfill (PADEP, 2007). PADEP approved the Phase 3 expansion on May 4, 2009 with a design that includes a geocomposite liner for the expansion. The footprint of Phase 3 is 110 acres, almost 17 acres of which will overlie unlined portions of Phases 1 and 2.

Active or Inactive Waste Management Unit

Active

Hydrogeologic Conditions

Four aquifers have been identified at the landfill: a mine spoil aquifer located to the south of Phases 1 and 2; a rind aquifer consisting of weathered bedrock; a deeper Uniontown Sandstone aquifer; and an even deeper Benwood Limestone aquifer (GAI, 2001). Groundwater flow directions within the mine spoil and rind aquifers are generally in the same direction as the ground surface topography – discharging to the west, north, and east along the top of bedrock and along a covered stream valley that discharges to the Monongahela River south of Phases 1 and 2. Groundwater within the Uniontown and Benwood formations generally flows to the northwest towards bedrock outcrop areas and eventually mixes with mine spoil and rind aquifer groundwater. Shallow groundwater flow in the bedrock is due to natural stress fractures in the bedrock and from secondary fractures from strip mining. The groundwater flow rates are reportedly very high, especially near stream valleys and bedrock outcrop areas – with maximum seepage velocities of 149 feet per year for the mine spoil aquifer, 735 feet per year for the rind aquifer, 735 feet per year for the Uniontown Sandstone aquifer, and 137 feet per year for the Benwood Limestone aquifer (Allegheny, 2006b). The landfill site is a recharge area for each underlying aquifer (Allegheny, 2006b).
Four streams around the landfill perimeter originate from shallow groundwater that emanates at springs or wetlands. Those streams are located to the north, northeast, southeast, and southwest – indicating that groundwater flow emanates radially from the landfill that is located on higher ground elevations. All of the streams are perennial streams classified as Warm Water Fisheries (WWF) under PADEP regulations and have a protected use for aquatic life (GAI, 2006).

Sources

Entity/Company - Location
Otter Tail Power - Big Stone Power Plant
48450 144th Street
Big Stone City, SD 57216
Grant County
Latitude: 45.305833 Longitude: -96.490278

Determination
Demonstrated damage to groundwater moving off-site (at northern and eastern property boundaries and south toward the Whetstone River)

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from CCW disposal units, ponds, and impoundments

Summary
The Big Stone Power Plant’s CCW landfill, bottom ash pond, and seven other waste disposal ponds have contaminated groundwater in excess of groundwater quality standards in 21 of 25 wells monitoring two separate aquifers. Exceedances have been measured in downgradient groundwater for arsenic at more than 13 times the federal MCL at 0.1322 mg/L, boron up to 34 times the federal Lifetime Health Advisory Level at 204 mg/L, lead up to 7 times the federal Action Level at 0.1086 mg/L, strontium up to 1.5 times the federal Lifetime Health Advisory at 6.03 mg/L, chloride up to 13 times the federal Secondary MCL (SMCL) at 3,330 mg/L, and sulfate up to 112 times the state standard and 224 times the federal SMCL at 56,000 mg/L.
Groundwater data from the cooling water pond and the evaporation pond demonstrate contamination at the property lines. South Dakota Department of Environment and Natural Resources Solid Waste officials insist that contamination is coming from the concentration of water softener brine wastes, but the unprecedented concentrations of sulfate, boron and strontium in the groundwater at this site that are specifically designated as ash monitoring parameters by the waste permit, indicates CCW is playing a major part in this pollution.

Furthermore, groundwater contour maps indicate that pollution is moving off-site yet no off-site monitoring or sampling of surface waters has occurred despite state records indicating more than 100 private and public wells are within five miles of the site. In addition groundwater from the site discharges into nearby surface waters (Whetsone River and Big Stone Lake) that have multiple designated uses.

Test of Proof

Annual groundwater monitoring reports provided by the South Dakota Department of Environment and Natural Resources (DENR) Waste Management Program from 2007 through 2009 were reviewed (DENR, 2007; DENR, 2008; DENR, 2009). The groundwater monitoring program consists of 25 wells, 17 of which are screened at shallow depths and 8 of which are screened at intermediate depths. Many wells are nested together to provide an indication of vertical contaminant transport. The wells are situated at CCW disposal units east of Big Stone Power Plant. Not all CCW ponds and impoundments at Big Stone have a permit, and not all CCW disposal units are monitored. None of the groundwater monitoring wells examined in this report could be considered “upgradient” of CCW waste disposal units or CCW ponds.

In general, Big Stone’s groundwater monitoring wells are sampled quarterly; however, not all wells are sampled in every event, and the list of parameters varies for four different groups of wells (H-Series, BC-Series, S-Series, and Well-Series wells). The H-Series wells monitor water flowing in the center of the site underneath and between the cooling pond, the ash landfill and pond and evaporation and holding ponds. The BC and S series wells monitor water in the southwestern part of the site downgradient of the brine ponds and cooling water pond and possibly a separate bottom ash pond and lime sludge ponds located further to the west which are otherwise entirely unmonitored. And Well-Series wells monitor water in the southeastern part of the site downgradient of the holding water pond. Only dissolved and no total analyses for metals was done for samples from wells at the ash pond and landfill, which may account for why these wells were the only wells at Big Stone that did not show exceedances of MCLs for arsenic or lead. Both dissolved and total metal exceedances were reported from other wells in 2007 and 2008 before analysis of total concentrations for trace metals was eliminated from all monitoring in 2009.

A review of Big Stone’s groundwater monitoring data reveals the following elevated concentrations and exceedances of South Dakota Groundwater Quality Standards (Chapter 74:54:01), used by South Dakota Department of Environment and Natural Resources (DENR), and federal MCLs in on-site groundwater downgradient of CCW disposal areas:

- **Arsenic** concentrations exceeded both the DENR standard and federal MCL (0.01 mg/L) in 11 wells in both the shallow and intermediate aquifers, with the highest measurement exceeding the standard by more than 13 times. The highest arsenic concentrations were reported in the brine pond wells, and the wells with the highest concentrations (S-2, BC-2, BC-3, and BC-4) of arsenic generally corresponded to those with the highest concentrations of boron, lead, sulfate, and chloride. The MCL for arsenic was exceeded for both dissolved and total metals results.
- **Boron** concentrations – exceeded the EPA Lifetime Health Advisory Level (6 mg/L) (EPA, Boron) in 8 wells in the shallow aquifer. The highest concentrations, up to 34 times the Health Advisory level, were reported in wells near the brine ponds, the cooling water pond, and the ash pond. The wells
with the highest concentrations of boron generally corresponded to those with high arsenic, lead, sulfate, and chloride levels.

- **Lead** concentrations – exceeded both the DENR standard and federal MCL (0.015 mg/L) for total lead in 4 wells in the shallow aquifer. The highest concentrations, up to 7.2 times above the MCL, were reported in wells near the brine ponds and the southeastern corner of the cooling water pond area.

- **Sulfate** concentrations – exceeded the DENR standard (500 mg/L) as well as the federal SMCL (250 mg/L) in 19 wells in both the shallow and intermediate aquifers. High sulfate concentrations were reported in wells near the brine ponds, the ash pond, the evaporation pond, the cooling water pond, and the holding pond. However, concentrations ranging from 24,300 to 56,000 mg/L (the latter being 112 times the DENR standard and 224 times the SMCL) in the brine pond wells were more than an order of magnitude higher than sulfate in other wells - attesting to an extreme level of degradation in shallow groundwater around the brine ponds.

- **Chloride** concentrations – exceeded the DENR standard and federal SMCL (250 mg/L) in 7 wells in the shallow aquifer. The highest concentrations, up to 13 times this standard, were reported in the shallow groundwater in the brine pond area.

- **Strontium** concentrations – exceeded the EPA Lifetime Health Advisory level of 4 mg/L in two shallow aquifer wells located near the brine ponds where the highest concentrations of other constituents were reported.

- **Total Dissolved Solids** – exceeded the DENR standard (1,000 mg/L) as well as the federal SMCL (500 mg/L) in wells downgradient of the ash pond, the ash landfill, and the holding pond area wells – the only samples where TDS was analyzed (2007 only). Although TDS was not measured near the brine ponds, TDS levels should be higher in wells near the brine pond wells that have had very high sulfate and chloride concentrations.

A tabulated summary of the highest reported concentrations for each well above the DENR standard for the 3 reporting years is as follows (DENR, 2007; DENR, 2008; DENR, 2009):

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Aquifer</th>
<th>2007 Result (highest > std.)</th>
<th>2008 Result (highest > std.)</th>
<th>2009 Result (highest > std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2-0X</td>
<td>Shallow aquifer</td>
<td>3,200 mg/L sulfate</td>
<td>2,530 mg/L sulfate</td>
<td>2,790 mg/L sulfate</td>
</tr>
<tr>
<td>H3-OX</td>
<td>Shallow aquifer</td>
<td>10.5 mg/L boron</td>
<td>10.9 mg/L boron</td>
<td>14 mg/L boron</td>
</tr>
<tr>
<td>H3-I</td>
<td>Intermediate aquifer</td>
<td>900 mg/L sulfate</td>
<td>854 mg/L sulfate</td>
<td>925 mg/L sulfate</td>
</tr>
<tr>
<td>H4-I</td>
<td>Shallow aquifer</td>
<td>1,140 mg/L sulfate</td>
<td>1,120 mg/L sulfate</td>
<td>1,510 mg/L sulfate</td>
</tr>
<tr>
<td>H4-OX</td>
<td>Shallow aquifer</td>
<td>1,550 mg/L sulfate</td>
<td>1,330 mg/L sulfate</td>
<td>1,770 mg/L sulfate</td>
</tr>
<tr>
<td>S-1</td>
<td>Shallow aquifer</td>
<td>0.0382 mg/L arsenic</td>
<td>0.0334 mg/L arsenic</td>
<td>0.239 mg/L boron</td>
</tr>
<tr>
<td>S-2</td>
<td>Shallow aquifer</td>
<td>0.0499 mg/L arsenic</td>
<td>0.0466 mg/L arsenic</td>
<td>0.0210 mg/L arsenic</td>
</tr>
<tr>
<td>S-3</td>
<td>Intermediate aquifer</td>
<td>0.0222 mg/L arsenic</td>
<td>0.0201 mg/L arsenic</td>
<td>0.022 mg/L arsenic</td>
</tr>
<tr>
<td>S-4</td>
<td></td>
<td>0.0113 mg/L arsenic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Although the groundwater monitoring system includes 25 wells, a review of the location and depths of the wells with parameter concentrations greater than DENR standards and the October 2008 potentiometric surface diagram (see reproduction below from Figure 2 Monitoring Wells and Groundwater Elevation Contours: October 2008, Otter Tail Power) suggests that the groundwater monitoring system at Big Stone is inadequate to define the nature and extent of contamination, based on the following deficiencies:

- There are no downgradient wells in the shallow or intermediate aquifers placed between the newest brine pond and the Whetstone River, located approximately 1,000 feet away from the new pond. The river is likely a shallow groundwater discharge point and is also the property line to the south. Groundwater monitoring results indicate substantial groundwater exceedances at this area.
- Wells S-4, S-5, and S-6 are only partially downgradient (mostly sidegradient) from the old brine pond area it monitors. No wells exist downgradient from the two brine ponds towards Whetstone.
River, as wells S-4, S-5, and S-6 are not hydraulically downgradient of wells with the highest concentrations of pollutants (such as Wells S-1, S-2, BC-2, BC-3, and BC-4). As a result, the lateral extent of contamination has not yet been fully defined.

- Two wells (H1-I, H1-OX) that are downgradient of the ash pond and the ash landfill are located almost 900 feet from the ash disposal units, too far away to reliably distinguish impacts to water quality from these units. They are also located side-by-side and apparently monitor the same aquifer, functioning effectively as just one monitoring point. The position of the wells so far away from the disposal units allows for dilution from the considerable mounding effects of the adjacent cooling water and evaporation ponds and does not account for horizontal variability of the groundwater.

- Twenty-five feet of shallow aquifer groundwater mounding occurs from the cooling pond, and 10 feet of mounding occurs from the evaporation pond - indicating substantial leakage through the bottom of each pond. The cooling water pond is located along the northern property line with no wells along that side. The evaporation pond is located along the northern and eastern property lines, with no wells along those property lines. Although there may be off-site contamination, groundwater is not being monitored along much of the perimeter of this site.

- Water-filled natural depressions indicative of farm ponds are present north of the property lines near the cooling water pond and the evaporation pond. Given the amount of mounding of shallow groundwater present, the possibility exists that these ponds receive shallow groundwater from the cooling water and evaporation ponds.

- No wells exist between contaminated Wells 11 and 12 to monitor the intermediate aquifer south of the holding pond in the southeastern corner of the site at the property line. The lateral extent of contamination in the intermediate and shallow aquifers has not been fully defined in this area even though multiple private wells and at least one public well appear to be within a mile of the boundary at this corner of the site.

- Twenty feet of groundwater mounding occurs in the shallow aquifer south and southeast of the holding pond, indicating that the pond is leaking.

Constituents Involved
Arsenic, boron, lead, strontium, chlorides, sulfate, and TDS

At Risk Populations
Groundwater is the only source of public water supply in South Dakota, with no known surface water supply intake in the entire state (Wendte, July 2010).

The same aquifer that is contaminated by Big Stone’s CCW disposal units appears to be used by multiple wells in relatively close proximity. The DENR has record of 119 wells within a five-mile radius of the power plant, and 19 are private drinking water wells within a two mile radius of the site (Wendte, July 2010). A quick review of those records identified wells for such uses as domestic home wells, commercial farm wells, geothermal wells, and even municipal public water supplies. In fact, the southeastern corner of the plant property is less than a mile from the heart of Big Stone City, which owns at least one municipal water supply.
well. Furthermore, numerous private domestic wells also exist within Big Stone City. Those wells are shallow—generally less than 100 feet deep. According to the DENR, Big Stone City is now supplied potable drinking water from the town of Ortonville, Minnesota, an adjacent community (Wendte, July 2010). DENR is in the process of digitizing paper well records; in the interim, well data may be incomplete.

In addition to the proximity to drinking water wells, the CCW disposal areas are near Big Stone Lake and the Whetstone River, both of which have multiple protected uses. In fact, the most contaminated wells at Big Stone Power Plant are located less than 1,000 feet from the Whetstone River. Big Stone Lake is located approximately 1,000 feet east of the power plant property. Currently, Big Stone Lake and the Whetstone River have DENR-designated uses for warm water permanent fish life propagation, limited contact recreation, fish and wildlife propagation, and irrigation (Wendte, July 2010). Big Stone Lake is also designated as immersion recreational water.

Incident and Date Damage Occurred / Identified

Data in this report identifies damage between 2007 and 2009.

Regulatory Actions

DENR required Big Stone to conduct assessment measures due to a release from the brine ponds (Wendte and Kropp, 2010). The assessment included installing additional wells around the pond(s) and a nest of three wells, S-4, S-5, and S-6, south towards the Whetstone River. These wells were installed in August 1990 (Wendte, July 2010). However, after the wells were installed, rather than conducting enhanced monitoring to determine the source and extent of contamination, the facility continued to monitor the groundwater under the normal detection-monitoring program. Thus significant contamination exists 20 years after the limited
assessments were performed. Yet no new off-site (beyond the Big Stone property line) wells have ever been
installed, no existing off-site wells have been sampled, and no surface water samples have been collected to-
date (Wendte and Kropp, 2010).

Wastes Present
Fly ash, bottom ash, settled lime water softener sludges, and process wastewater discharges to ponds

Type(s) of Waste Management Unit
Units included in the plant solid waste permit are: an ash landfill and pond with no liner that contain fly ash
and bottom ash, two brine ponds that are composite lined with an under drain collection system, two unlined
lime sludge water softener ponds, and an inert construction/demolition debris landfill (Wendte and Kropp,
2010). Fly ash collected by plant air pollution control devices is hauled in dry form to the ash landfill for
disposal (Wendte, July 2010). An ash pond located between the cooling water pond and the evaporation
pond is used to settle solids associated with stormwater runoff from the ash landfill (Wendte, June 2010).

Although the lime sludge water softener ponds are permitted under solid waste rules, there is no groundwater
monitoring system associated with them.

The brine ponds are used to settle solids generated during raw water softening to make the water more
suitable for use in on-site boilers (Wendte and Kropp, 2010). Although the two brine ponds are lined, they
are constructed over the original 12-acre brine pond that was never lined (Wendte, June 2010). Shallow
groundwater beneath the brine ponds (the area of the most severely contaminated groundwater) is collected
in an under drain system, and that water is disposed of in the cooling water pond (Wendte, July 2010). As
the concentrations of parameters in the cooling water pond increase, the water becomes unacceptable for
plant use (Wendte, July 2010). As a result, water from the cooling water pond is pumped to the evaporation
pond, where it is allowed to evaporate and to percolate to the groundwater. Fresh water from Big Stone
Lake is then added to the cooling water pond to be used in the boilers (Wendte, July 2010). Evaporation
pond water is also pumped to the holding pond. Water from the holding pond is treated, and water with
undesirable constituents unsuitable for plant use is discharged into the brine ponds – the area with the worst
groundwater contamination. The treated holding pond water is used in plant boilers (Wendte and Kropp,
2010). Without a permitted surface discharge, aside from evaporation the only exit for water from this
closed loop system that concentrates wastes and impurities in the waters is into the shallow groundwater at the
site along with all leachate from the unlined ash pond and landfill.

In addition, a bottom ash settling pond (undetermined if a liner is present) located near the power plant and
west of the disposal units assessed in this report is used to settle slurried ash, and that ash is either transported
off-site for reuse or is disposed of in the ash landfill (Wendte, July 2010). The pond is periodically dredged
(no frequency given) for disposal into the landfill. Since the ash pond is not considered to be a “disposal"
unit, the DENR Waste Management Program does not regulate the pond (Wendte and Kropp, 2010).

The DENR was unaware if the evaporation pond or the cooling water pond has a liner (Wendte, July 2010),
despite the ponds receiving plant process wastewaters. Those ponds and the holding water pond are not
included in the solid waste permit, nor do they have a surface water or groundwater discharge permit. Each
pond is nearly 1-mile wide.

Active or Inactive Waste Management Unit
Active
Hydrogeologic Conditions
Two water-bearing zones are being monitored, with the most shallow zone being approximately 16 feet below ground surface (average static water level) and the intermediate/deep zone being 58 feet deep (average static water levels) (Big Stone, 2008). According to DENR staff familiar with the solid waste permitting program for this plant, no “aquifer” as defined by South Dakota groundwater regulations exists beneath the plant (Wendte and Kropp, 2010). The monitoring system includes numerous well nests where wells that are situated side-by-side monitor different and sometimes the same water-bearing zones. Those that monitor different zones have vastly different static water levels for the same monitoring event.

A review of an October 2008 potentiometric surface diagram, which shows the direction of groundwater flow (higher elevation to lower elevation), indicates a steep groundwater gradient in the area of the highest parameter contamination – almost 6 percent in the brine pond area and 3 percent in the holding pond area – due to substantial mounding of the shallow groundwater; i.e. localized elevation of groundwater (Otter Tail Power, 2008). No flow rates or seepage velocities were found during the file review.

Additional Narrative
Although the South Dakota Groundwater Quality Standards state that any subsurface water in a saturated zone that has an ambient TDS concentration of less than 10,000 mg/L is classified as being “groundwater” and having a beneficial use of drinking water, suitable for human consumption, results from 2007 indicated that the TDS concentrations downgradient of waste disposal units were approximately 1,300 mg/L (DENR, 2007). Therefore, the water meets the DENR definition of useable groundwater (DENR, 2007). This acceptable water quality contradicts the DENR’s claim that the groundwater beneath the power plant is not an aquifer.

Chapter 74:54:02:02, “Groundwater Discharge Permits, Applicant for Groundwater Discharge Plan,” requires facilities that discharge wastes or pollutants that “may move directly or indirectly into groundwater” to apply for a groundwater discharge permit. The DENR Groundwater Program stated that the Big Stone plant does not have a groundwater discharge permit of any type for any pond (Walsh, 2010) – despite the fact that, at a minimum, the ash pond, the cooling water pond, and the evaporation pond are designed without a liner. If groundwater analyses demonstrate that monitoring results do not comply with the groundwater protection standards, a groundwater discharge permit is required (Walsh, 2010). Groundwater analyses submitted to the Waste Management Program demonstrate that multiple exceedances of South Dakota groundwater protection standards have long been occurring in seepage to groundwater from the ponds – yet the ponds are operating without groundwater discharge permits. There is no surface water discharge from either the cooling water or evaporation pond (Bruscher, 2010), which means that contaminants in these ponds enter the groundwater system via downward and lateral seepage.

The DENR Waste Management Program allows groundwater results for metals to be presented as dissolved (field-filtered) metals, instead of the traditionally EPA-accepted total (unfiltered) results. The South Dakota DENR contends that total metals results overstate pollutant concentrations because of naturally occurring glacial till materials that are present in suspended form (Wendte and Kropp, 2010). An alternative groundwater monitoring parameter list has been developed for the Big Stone plant to include constituents that are indicative of coal combustion wastes, such as boron, sulfate, and strontium (Wendte and Kropp, 2010) – the very constituents that are in very high concentrations in the groundwater at the plant. Groundwater data for the Big Stone plant is primarily reported as dissolved metals; however, some 2007 and 2008 data is reported in both total and dissolved forms. In 2009, only the dissolved fractions of metals were reported in groundwater monitoring results.
Sources

Buscher. 2010. Telephone conversation with Kelli Buscher, Team Leader, Surface Water Quality Program, South Dakota Department of Environment and Natural Resources (June 24, 2010).

DENR. 2009. Tabulated portions of the 2009 Annual Report, provided by DENR (June 2010).

Walsh. 2010. Telephone conversation with Brian Walsh, Groundwater Program, South Dakota Department of Environment and Natural Resources (June 24, 2010).

Wendte. June 2010. Email correspondence from Jim Wendte, Natural Resources Engineer Director, Waste Management Program, South Dakota Department of Environment and Natural Resources (June 25, 2010)

Wendte. July 2010. Email correspondence from Jim Wendte, Natural Resources Engineer Director, Waste Management Program, South Dakota Department of Environment and Natural Resources (July 15, 2010).

Wendte and Kropp. 2010. Telephone conversation with Jim Wendte, Natural Resources Engineer Director and Steve Kropp, Natural Resources Engineering Specialist, Waste Management Program, South Dakota Department of Environment and Natural Resources (June 23, 2010).
Entity/Company – Location
Tennessee Valley Authority - Cumberland Steam Plant
815 Cumberland City Road
Cumberland City, Stewart County, TN 37050
Latitude: 36.3812 Longitude: -87.6515

Determination
Demonstrated damage to on-site groundwater

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from disposal areas into groundwater

Summary
Groundwater downgradient of a gypsum storage area and ash ponds at the Tennessee Valley Authority (TVA) Cumberland Fossil Plant is contaminated with arsenic concentrations up to 2.2 times the federal Maximum Contaminant Level (MCL), selenium concentrations up to 3 times the MCL, and boron up to 12.7 times the federal Health Advisory Level. Concentrations of aluminum, chloride, iron, manganese, sulfate, and total dissolved solids (TDS) also routinely exceeded federal Secondary MCLs (SMCLs) in wells downgradient of the CCW disposal sites. The stark contrast between these concentrations and those at upgradient monitoring points, which are often below detection limits, clearly suggests that CCW leachate is contaminating groundwater. The construction of two CCW storage-disposal areas on top of earlier ash ponds and on top of a former creek channel have created conditions conducive to groundwater contamination. The current Ash Pond and Gypsum Storage Area at the Cumberland Fossil Plant are also both on EPA’s list of “High Hazard” surface impoundments.
Test of Proof

At Cumberland Fossil Plant, TVA collects groundwater samples from downgradient monitoring wells 93-1 through 93-4 (including replacement well 93-2R) and from upgradient sampling stations at Rye Spring and Wells Creek.

As the chart below demonstrates, upgradient water samples of boron, arsenic, and selenium have been often Below Detection Limit (BDL), while downgradient groundwater water samples are well above MCLs and Health Advisory Levels, indicating groundwater contamination from CCW leachate leaking from the unlined ponds.
In addition, upgradient water samples of aluminum, chloride, iron, manganese, sulfate, and TDS are often BDL, while downgradient groundwater water samples are well above SMCLs, indicating groundwater contamination from CCW leachate. For example, in an October 2009 TVA groundwater monitoring report, upgradient levels of TDS were 200 mg/L and 400 mg/L, yet all downgradient wells were over the SMCL of 500 mg/L, with levels as high as 6,600 mg/L at Well 93-2. Similarly, in October 2009, upgradient sulfate levels were 5.9 mg/L and 50 mg/L, yet the majority of downgradient wells were over the SMCL of 250 mg/L, with levels as high as 2,000 mg/L at Well 93-2. Similar trends are evident for aluminum, iron, and manganese, where maximum aluminum concentrations have reached as high as 2.5 mg/L in July 2009 (aluminum SMCL is 0.05 – 0.2 mg/L); maximum iron concentrations reached 10 mg/L in July 2008 (iron SMCL is 0.3 mg/L); and maximum manganese levels reached 18 mg/L in several tests (manganese SMCL is 0.05 mg/L).

Constituents Involved
Aluminum, arsenic, boron, chloride, iron, manganese, selenium, sulfate, and total dissolved solids

At Risk Population
There are 440 households within a 3-mile radius of the TVA Cumberland Fossil Plant, and the “high hazard” ranking for Cumberland Fossil Plant’s surface impoundments indicates that persons living nearby are likely to be seriously harmed by any failure of Cumberland’s storage facilities. The area surrounding TVA Cumberland is rural, and the overwhelming majority of drinking water sources in Stewart County are drawn from groundwater according to the U.S. EPA’s Safe Drinking Water Information System. Those that are not drawing from groundwater take water from the Cumberland River. Private and public well locational data was unavailable for all TVA sites. It is unclear whether well records are housed with TDEC or TVA. Employees of TDEC insisted this data was closely held for “security reasons” and could not be accessed by the public; however, TVA may disclose well records that they maintained. When TVA was contacted, they claimed to have no well records and referred back to TDEC. This back and forth referral occurred multiple times over the course of a month and yielded no results. It is unclear whether records do or do not exist.

Incident and Date Damage Occurred / Identified
Documentation of damage has occurred since the 2000s

Wastes Present
The dry ash that is not marketed to the concrete industry is hauled to an on-site dry stack disposal area (Dry Ash Stack). In addition, approximately 135,000 tons per year of bottom ash is wet-sluiced to the Active Ash Pond. Dewatered bottom ash is reclaimed from the Active Ash Pond and stacked within the Dry Ash Stack. Approximately 1,100,000 tons of gypsum is produced each year, and gypsum that is not marketed to the wallboard industry is wet-sluiced to the Gypsum Storage Area (gypsum pond).

Type(s) of Waste Management Unit
Dry storage built over wet surface impoundments, and wet surface impoundments built over a former creek bed. It is unclear whether any of TVA’s ash storage facilities (old or new) were lined to prevent CCW leachate from entering groundwater. In view of the fact that the fly ash pond was constructed in 1969 and that Tennessee...
regulations do not require installation of liners for CCW ponds, it is highly unlikely that 50-acre ash pond at the TVA Cumberland Fossil Plant is lined.

Active or Inactive Waste Management Unit(s)
Active

Hydrogeologic Conditions
The 2009 Stantec Engineering Evaluation of Cumberland Fossil Plant notes that, “Because the plant is situated along the banks of Wells Creek and the Cumberland River, a mantle of alluvial soils primarily consisting of silty lean clays overlay bedrock across portions of the site.” (Stantec, 2009). In addition, TVA states in its October 2009 Groundwater Monitoring Report:

Southwestward flow of groundwater beneath the disposal area is indicated by the potentiometric contours with an average horizontal hydraulic gradient of approximately 0.0072. Because potentiometric level data are spatially limited, the estimated groundwater gradient is probably not representative of overall gradients in the disposal site vicinity. The bottom ash pond and the rim-ditch stacking operation in the gypsum disposal area likely produce radial groundwater flow away from these impoundments which cannot be adequately defined with the existing well network. . . The dry ash and gypsum disposal areas are underlain (in descending order) by some 40 feet of fly ash and bottom ash deposits, approximately 15 to 20 feet of residual and/or alluvial soils, and by limestone bedrock. The older ash deposits, which represent the shallowest water-bearing unit, exhibit a mean hydraulic conductivity of approximately 2.5x10-5 cm/s (or 0.022 m/d) and a porosity of 0.48. Using these data and the current groundwater gradient given above, the local groundwater seepage velocity through the ash deposits is estimated from Darcy’s Law to be approximately 3.3x10-4 m/d.

Additional Narrative
The Cumberland Fossil Plant has two coal-fired generating units. Construction began in 1968 and was completed in 1973. The plant consumes approximately 20,000 tons of coal per day. The Cumberland Fossil Plant has three CCW areas on-site: (1) a gypsum storage area (approximately 170 acres) that was built on top of the plant’s original ash pond in 1996; (2) an ash pond (approximately 50 acres), which was constructed in 1969 and required the relocation of Wells Creek. As a result, portions of the ash pond and dry ash stack were constructed over the original location of Wells Creek; and (3) a dry ash stack (approximately 110 acres) that is continually being constructed, and the stack’s maximum height is approximately 35 feet. The stack is being constructed over sluiced bottom and fly ash, and it is unknown how much sluiced ash is beneath the stack.

Sources

Entity/Company – Location
Tennessee Valley Authority - Gallatin Fossil Plant
1499 Steam Plant Road
Gallatin, Sumner County, TN 37066
Latitude: 36.315 Longitude: -86.408

Determination
Demonstrated damage to on-site groundwater moving off-site (into the adjacent Cumberland River).

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from CCW disposal areas into groundwater

Summary
An unlined, closed CCW impoundment at the Tennessee Valley Authority (TVA) Gallatin Fossil Plant is contaminating groundwater with beryllium 4 to 6 times the federal Maximum Contaminant Level (MCL), cadmium exceeding the MCL, nickel exceeding the Tennessee MCL by up to 2.5 times, and boron consistently exceeding federal Health Advisory Levels. In addition, aluminum, iron, manganese, sulfate and total dissolved solids (TDS) also routinely exceed federal Secondary MCLs (SMCLs) at downgradient wells. Two newer active CCW ponds at Gallatin are not monitored. Like the closed impoundment, these ponds are also unlined.
Test of Proof

At Gallatin Fossil Plant, TVA collects groundwater samples from upgradient wells GAF-21 and GAF-22 (new as of October 2009), and from downgradient compliance wells GAF-19R and GAF-20 around the closed CCW impoundment.

As the chart below demonstrates, upgradient water samples of boron are Below Detection Limit (BDL), while downgradient groundwater water samples are well above the Health Advisory Levels, indicating groundwater contamination from CCW leachate. Similarly, cadmium, nickel, and beryllium are consistently higher in downgradient wells than upgradient wells, and all the values listed below in downgradient wells are above the MCLs and/or State Groundwater standards.

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Parameter / Standard (mg/L)</th>
<th>Upgradient Well (mg/L)</th>
<th>Downgradient Well Exceedances (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/14/2009</td>
<td>Boron (3.0) (Health Advisory Level for Children)</td>
<td>GAF-21: BDL, GAF-22: BDL</td>
<td>GAF-19R: 3.9, GAF-20: 5.6</td>
</tr>
<tr>
<td>7/14/2009</td>
<td>Boron (3.0)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 3.9, GAF-20: 5.4</td>
</tr>
<tr>
<td>2/5/2009</td>
<td>Boron (3.0)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 4.1, GAF-20: 5.5</td>
</tr>
<tr>
<td>8/12/2008</td>
<td>Boron (3.0)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 4.5, GAF-20: 5.5</td>
</tr>
<tr>
<td>2/19/2008</td>
<td>Boron (3.0)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 3.6, GAF-20: 5.6</td>
</tr>
<tr>
<td>10/14/2009</td>
<td>Cadmium (0.005)</td>
<td>GAF-21: 0.0049, GAF-22: BDL</td>
<td>GAF-19R: 0.005</td>
</tr>
<tr>
<td>7/14/2009</td>
<td>Cadmium (0.005)</td>
<td>GAF-21: 0.0058</td>
<td>GAF-19R: 0.0052</td>
</tr>
<tr>
<td>4/1/2009</td>
<td>Cadmium (0.005)</td>
<td>GAF-21: 0.0014</td>
<td>GAF-19R: 0.0064</td>
</tr>
<tr>
<td>8/12/2008</td>
<td>Cadmium (0.005)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 0.0057</td>
</tr>
<tr>
<td>2/19/2008</td>
<td>Cadmium (0.005)</td>
<td>GAF-21: 0.0010</td>
<td>GAF-19R: 0.005</td>
</tr>
<tr>
<td>10/14/2009</td>
<td>Nickel (TN Standard: 0.1)</td>
<td>GAF-21: 0.069, GAF-22: 0.039</td>
<td>GAF-19R: 0.20</td>
</tr>
<tr>
<td>7/14/2009</td>
<td>Nickel (0.1)</td>
<td>GAF-21: 0.11</td>
<td>GAF-19R: 0.25</td>
</tr>
<tr>
<td>4/1/2009</td>
<td>Nickel (0.1)</td>
<td>GAF-21: 0.030</td>
<td>GAF-19R: 0.23</td>
</tr>
<tr>
<td>2/5/2009</td>
<td>Nickel (0.1)</td>
<td>GAF-21: 0.013</td>
<td>GAF-19R: 0.19</td>
</tr>
<tr>
<td>8/12/2008</td>
<td>Nickel (0.1)</td>
<td>GAF-21: 0.016</td>
<td>GAF-19R: 0.22</td>
</tr>
<tr>
<td>2/19/2008</td>
<td>Nickel (0.1)</td>
<td>GAF-21: 0.020</td>
<td>GAF-19R: 0.16</td>
</tr>
<tr>
<td>10/14/2009</td>
<td>Beryllium (0.004)</td>
<td>GAF-21: BDL, GAF-22: BDL</td>
<td>GAF-19R: 0.016</td>
</tr>
<tr>
<td>7/14/2009</td>
<td>Beryllium (0.004)</td>
<td>GAF-21: 0.0028</td>
<td>GAF-19R: 0.019</td>
</tr>
<tr>
<td>4/1/2009</td>
<td>Beryllium (0.004)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 0.023</td>
</tr>
<tr>
<td>2/5/2009</td>
<td>Beryllium (0.004)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 0.019</td>
</tr>
<tr>
<td>8/12/2008</td>
<td>Beryllium (0.004)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 0.019</td>
</tr>
<tr>
<td>2/19/2008</td>
<td>Beryllium (0.004)</td>
<td>GAF-21: BDL</td>
<td>GAF-19R: 0.017</td>
</tr>
</tbody>
</table>

In addition, data from downgradient groundwater wells reveal that SMCLs, such as sulfate, manganese, iron, and TDS are well above both SMCLs and upgradient values, indicating groundwater contamination.
from CCW leachate. For example, in an October 2009 TVA groundwater monitoring report, upgradient levels of TDS were 320 mg/L in Well 22, yet downgradient wells were over the SMCL of 500 mg/L, with levels as high as 6,500 mg/L at Well 19R). Also in October 2009, the upgradient sulfate level was 32 mg/L at Well 22, yet downgradient wells were over the SMCL of 250 mg/L, with levels as high as 4,700 mg/L at Well 19R. Similar trends are evident for aluminum, iron, and manganese, where maximum aluminum (SMCL of 0.05–0.2 mg/L) concentrations reached 130 mg/L, maximum iron (SMCL of 0.3 mg/L) concentrations reached 930 mg/L, and maximum manganese (SMCL of 0.05 mg/L) levels often reach 22 mg/L.

Constituents Involved
Aluminum, boron, beryllium, cadmium, iron, manganese, nickel, sulfate, and total dissolved solids

At Risk Population
Many public drinking water sources for communities near the TVA Gallatin Plant use treated water directly from the Cumberland River. For example, the Gallatin Water Department, which serves approximately 38,000 people and supplies water to other companies, such as Castalian Springs in Bethpage, TN, is located just over one mile downstream of the TVA Gallatin Steam Plant’s Ash Ponds. It is unclear whether well records and locations are housed with TDEC or TVA. During data retrieval process, employees of TDEC insisted this data was closely held for “security reasons” and could not be accessed by the public; however, TVA may disclose well records that they maintained. When TVA was contacted, they claimed to have no well records and referred back to TDEC. This back and forth referral occurred multiple times over the course of a month and yielded no results. It is unclear whether records do or do not exist.

Incident and Date Damage Occurred / Identified
Documentation of damage has occurred since the 2000s

Wastes Present
Bottom ash and fly ash from the TVA Gallatin Fossil Plant

Type(s) of Waste Management Unit
Aside from the closed ash disposal area, which is approximately 73 acres and is unlined, the Gallatin Fossil Plant has a bottom ash pond of approximately 269 acres and a fly ash pond of approximately 157 acres, both of which are also unlined.

Active or Inactive Waste Management Unit(s)
Active and inactive; the closed pond is inactive, but the bottom ash pond and fly ash pond at Gallatin are both active.

Hydrogeologic Conditions
The Stantec Engineering Evaluation of Gallatin Fossil Plant notes that, “the geologic mapping depicts alluvial deposits consisting of clay, silt and very fine sand across large portions of the site” (Stantec, 2009). The Stantec report also notes that “the USGS topographic mapping depicts several enclosed drainage basins indicative of karst activity within the vicinity of the plant” (Stantec, 2009). In addition, TVA states in its October 2009 Groundwater Monitoring Report:
Hydrogeologic data for compliance monitoring wells indicate that shallow groundwater movement beneath the Abandoned Ash Disposal Area occurs in Quaternary age alluvial deposits. Wells range from approximately 49 to 52 feet in depth and all are completed in alluvial deposits. The average horizontal hydraulic gradient (Jh) in the disposal site vicinity is approximately 0.0192, based on the October 14 water level measurements in wells GAF-19R through GAF-21. The direction of the horizontal gradient is southwesterly toward the Cumberland River. The highest measured hydraulic conductivity in the vicinity of the disposal area is 2.2E-7 cm/s. This measurement represents an estimate of vertical hydraulic conductivity (Kv) since it was determined from laboratory testing of an undisturbed soil core. The horizontal component of hydraulic conductivity (Kh) is conservatively estimated to be about ten times Kv or approximately 2.2E-6 cm/s (6.2E-3 ft/d). An effective soil porosity (θ) of 0.2 is assumed in estimating the horizontal seepage velocity (v) through the soil zone. Applying Darcy’s Law (i.e., v = Kh*Jh/θ), an average horizontal seepage velocity between the disposal site and the river of approximately 0.22 ft/yr is conservatively estimated.

Additional Narrative

Construction of the Gallatin Fossil Plant began in 1953 and was completed in 1959. Gallatin consumes approximately 12,350 tons of coal per day, and is located on the north bank of the Cumberland River, about 30 miles northeast of Nashville, TN. The Gallatin Fossil Plant has three CCW areas on-site: (1) a bottom ash pond (approximately 248 acres); (2) a fly ash pond (approximately 167 acres); and (3) a closed ash disposal area (approximately 73 acres).

The closed coal ash disposal area was the first ash disposal area, and dates back to Gallatin’s construction in the late 1950s. TVA sluiced wet ash to this disposal area until 1970 and then abandoned the site. In 1985, new slides began to develop around the dike, and in 1986 the entire perimeter dike was reconstructed and flattened. The Tennessee Department of Environment and Conservation approved a closure plan for the closed ash impoundment in 1997.

Recently, in July 2010, TVA announced it would install 13 new piezometers to detect potential seepage from its active ash ponds into the Cumberland River (Potter, 2010).

Sources

Entity/Company – Location
Tennessee Valley Authority - Johnsonville Fossil Plant
535 Steam Plant Road
New Johnsonville, TN 37134
Humphreys County
Latitude: 36.035 Longitude: -87.984

Determination
Demonstrated damage to on-site groundwater discharging to surface water (Tennessee River).

Probable Cause(s)
Leaching of coal combustion waste (CCW) contaminants from CCW landfills and ponds to underlying groundwater that discharges to the Tennessee River

Summary
The Johnsonville Fossil Plant’s active CCW disposal area sits on an unlined island in the middle of the Tennessee River. Data obtained from the Tennessee Valley Authority (TVA) show that groundwater on the island contains high levels of arsenic, aluminum, boron, cadmium, chromium, iron, lead, manganese, molybdenum, sulfate, and total dissolved solids (TDS) far above federal Maximum Contaminant Levels (MCLs), Secondary MCLs (SMCLs), and federal health advisory levels. For example, groundwater monitoring wells show arsenic concentrations as high as 0.52 mg/L (52 times the MCL); boron as high as 48 mg/L (8 times the lifetime health advisory level); cadmium at 0.260 mg/L (52 times the MCL); and lead at 0.39 mg/L (26 times the MCL). Even though TVA still uses the island as its “Active Ash Disposal Area,” the State allowed TVA to stop monitoring the island and an abandoned, unlined “Area A” where levels of CCW metals were the highest. The State has not required TVA to monitor off-site groundwater or surface water to protect against further contamination.

Test of Proof

TVA’s groundwater monitoring data reveal that levels of arsenic, aluminum, boron, cadmium, chromium, iron, lead, manganese, molybdenum, sulfate, and TDS have substantially exceeded federal MCLs, SMCLs, and federal health advisory levels at Johnsonville’s “Active Ash Disposal Area,” located on an island in the middle of the Tennessee River. Similarly, groundwater monitoring reports at the Dredged Ash Disposal Area. Abandoned Coal Ash Disposal Area “Area A,” and South Rail Loop Ash Disposal Area show levels of sulfate, TDS, aluminum, iron, and manganese exceeding MCLs. In addition, boron levels exceed federal health advisory levels in groundwater monitoring wells at the South Rail Loop Ash Disposal Area. At present, TVA only monitors groundwater at two of its four ash disposal sites at the Johnsonville Plant — the South Rail Loop Ash Disposal Area, and the Dredged Ash Disposal Area.

Active Ash Disposal Island

The “Active Ash Disposal Area” is an 87-acre unlined CCW disposal site that includes a landfill and ponds and is situated on an island in the middle of the Tennessee River. TVA began monitoring groundwater on the island in the early 1990s, then stopped monitoring, perhaps due to the extreme exceedances of both federal and state standards. No wells on the island can be considered upgradient, and pollutants, such as arsenic, exceed federal standards at every single well on the island. For brevity, only select pollutants and wells are included in this report, and since TVA stopped monitoring, only select years are available.

TVA’s groundwater monitoring data from 1986, 1988, and 1991 - 1994 on the island is summarized below and shows that results for arsenic, boron, lead, molybdenum, and cadmium were far higher than federal MCLs and Lifetime Health Advisory Levels.

- **Arsenic** exceeded the MCL (0.010 mg/L) 17 times, with levels as high as 0.52 mg/L (52 times the MCL in well SS16), and 0.065 mg/L (over 6 times the MCL in well SS13).
- **Boron** exceeded federal health advisory levels 14 times, with levels as high as 16 mg/L (over 2 times the federal lifetime health advisory level in well SS13); and 8.4 mg/L (1.4 times the federal lifetime health advisory level in well SS16).
- **Cadmium** exceeded the MCL (0.005 mg/L) 8 times, with levels as high as 0.260 (52 times the MCL in well SS16), and 0.086 mg/l (over 17 times the MCL in well SS13).
- **Lead** exceeded the MCL (0.015 mg/L) 13 times, with levels as high as 0.120 mg/L (8 times the MCL in well SS13), and 0.100 mg/L (over 6 times the MCL in well SS16).
- **Molybdenum** exceeded the federal lifetime health advisory level (0.040 mg/L) 10 times, with levels as high as 1.2 mg/L (30 times the federal lifetime health advisory level in well SS16), and 0.510 mg/L (over 12 times the federal lifetime health advisory level in well SS16).

In addition, TVA data shows that wells on the island also exceeded federal standards for additional pollutants, including aluminum, chromium, iron, manganese, sulfate, and TDS. For example, chromium reached 0.16 mg/L (over the MCL of 0.1 mg/L); aluminum reached 470 mg/L (over 9,400 times the SMCL of 0.05 mg/L); iron reached 200 mg/L (over 660 times the SMCL of 0.3 mg/L); manganese reached 16 mg/L (320 times the SMCL of 0.05 mg/L); sulfate reached 1,500 mg/L (6 times the SMCL of 250 mg/L); and total dissolved solids reached 2,000 mg/L (4 times the SMCL of 500 mg/L).

North Abandoned Ash Disposal Area (“Area A”)

The unlined North Abandoned Ash Disposal Area (“Area A”) is approximately 45 acres, and was the original CCW disposal pond for the plant. It located north of the plant, was built in the early 1950s, and is currently closed. TVA operated six groundwater monitoring wells near Area A. However, like the Active Ash Disposal Area, TVA ceased monitoring groundwater in this area. For brevity, only select pollutants and wells are included in this report, and since TVA stopped monitoring, only select years are available. TVA’s
groundwater monitoring data from 1991 - 1994 on the island is summarized below and shows that results for arsenic, boron, lead, molybdenum, and cadmium were far higher than federal MCLs and Lifetime Health Advisory Levels.

- Arsenic exceeded the MCL (0.010 mg/L) over 75 times, with levels as high as 0.57 mg/L (57 times the MCL in well C6), and 0.39 mg/L (39 times the MCL in well C1)
- Boron exceeded federal lifetime health advisory level (6 mg/L) over 60 times, with levels as high as 48 mg/L (8 times the federal lifetime health advisory level in well C1), and 40 mg/L (over 6 times the federal lifetime health advisory level in Well C1).
- Lead exceeded the MCL (0.015 mg/L) over 30 times, with levels as high as 0.39 mg/L (26 times the MCL in well C6) and 0.25 mg/L (over 16 times the MCL in well C6).
- Molybdenum exceeded the federal lifetime health advisory level (0.040 mg/L) over 50 times, with levels as high as 0.42 mg/L (over 10 times the federal lifetime health advisory level in well C5), and 0.35 mg/L (over 8 times the federal lifetime health advisory level in well C2).
- Cadmium exceeded the MCL (0.005 mg/L) over 20 times, with levels as high as 0.24 mg/L (48 times the MCL in well C5), and 0.037 mg/L (over 7 times the MCL in well C1).

In addition, groundwater in Area A exceeded standards for other pollutants, including aluminum, chromium, iron, manganese, sulfate, and total dissolved solids. For example chromium reached 0.62 mg/L (over 6 times the MCL of 0.1 mg/L); aluminum reached 1,100 mg/L (over twenty thousand times the SMCL of 0.05 mg/L); iron reached 830 mg/L (over 2,700 times the SMCL of 0.3 mg/L); manganese reached 10 mg/L (200 times the SMCL of 0.05 mg/L); sulfate reached 2000 mg/L (8 times the SMCL of 250 mg/L); and TDS reached 3300 mg/L (over 6 times the SMCL of 500 mg/L).

South Rail Loop Ash Disposal Area

The South Railroad Loop Ash Disposal Area is a 95-acre, closed CCW landfill. There are four monitoring wells at the South Rail Loop Disposal Area, one upgradient (Well B-9), and three downgradient wells (B5, B6, and B8). TVA’s data from downgradient wells documents substantial degradation of groundwater in quarterly reports during 2008–2009 at this site as summarized below:

- Aluminum exceeded the most protective SMCL (0.05 mg/L) 9 times in downgradient groundwater wells, with levels as high as 2.0 mg/L (40 times the most protective SMCL in well B5).
- Manganese exceeded the SMCL (0.05 mg/L) 12 times in downgradient groundwater wells, with levels as high as 2.7 mg/L (54 times the SMCL in well B8).
- Sulfate exceeded the SMCL (250 mg/L) 6 times in downgradient groundwater wells, with levels as high as 1200 mg/L (4.8 times the SMCL in well B8).
- Iron exceeded the SMCL (0.3 mg/L) 10 times in downgradient groundwater wells, with levels as high as 2.7 mg/L (9 times the SMCL in well B6).
- TDS exceeded the SMCL (500 mg/L) 6 times in downgradient groundwater wells, with levels as high as 1700 mg/L (3.4 times the SMCL in well B8).
- Boron exceeded the federal lifetime health advisory level (6 mg/L) 5 times in downgradient groundwater wells, with levels as high as 10 mg/L (1.6 times the Lifetime Health Advisory Level in well B8).

TVA states that groundwater at the South Rail Loop Ash Disposal Area “generally flows westward across the disposal site” to the Tennessee River, and “[g]roundwater passing beneath the site ultimately discharges to the Tennessee River” (TVA 2008, 2007 and 2006).
Dredged Ash Disposal Area

The Dredged Ash Disposal Area is a 35-acre closed, unlined CCW Dredge Pond, east of the Gas Turbines Area that has a “buffer of 3 feet of soil with a permeability of 1x10⁻⁶ cm/sec” (TVA 1992). There are four monitoring wells at the Dredged Ash Disposal Area, one upgradient (Well B13), and three downgradient wells (B10, B11, and B12). TVA data collected in 2008-2009 documents contamination of groundwater as follows:

- Aluminum exceeded the most protective SMCL (0.05 mg/L) 9 times in downgradient groundwater wells, with levels as high as 14 mg/L (280 times the most protective SMCL in well B10).
- Manganese exceeded the SMCL (0.05 mg/L) 9 times in downgradient groundwater wells, with levels as high as 2.2 mg/L (44 times the SMCL in well B12).
- Iron exceeded the SMCL (0.3 mg/L) 10 times in downgradient groundwater wells, with levels as high as 14 mg/L (46 times the SMCL in well B10).
- Chloride exceeded the SMCL (250 mg/L) 7 times in downgradient groundwater wells, with levels as high as 920 (3.6 times the SMCL in well B12).
- Total Dissolved Solids exceeded the SMCL (500 mg/L) 7 times in downgradient groundwater wells, with levels as high as 1,800 (3.6 times the SMCL in well B12).

TVA states that groundwater at the Dredged Ash Disposal Area “generally flows southwestward across the disposal site” to the Tennessee River, and [g]roundwater passing beneath the site ultimately discharges to the Tennessee River” (TVA 2008, 2007 and 2006).

Surface Water Monitoring – Tennessee River

- Several of the CCW pollutants that are present at high levels in groundwater underneath the Dredge Ash Disposal Area and South Rail Loop Ash Disposal Area are also present at levels in Tennessee River/Kentucky Lake at levels that exceed Water Quality Criteria (“WQC”) as measured at Johnsonville Fossil Plant’s water intake point. Manganese concentrations in the Tennessee River were measured at 0.079 mg/L; above the EPA WQC for Human Health of: 0.05 mg/L
- Iron concentrations in the Tennessee River were measured at 0.395 mg/L, above the EPA WQC for Human Health of: 0.300 mg/L.
- Aluminum concentrations in the Tennessee River were measured at 1.04 mg/L, above EPA WQC for Freshwater Aquatic Life: 0.087 mg/L (chronic) and 0.75 mg/L (acute).

Despite evidence of surface water quality impacts from Johnsonville Fossil Plant CCW disposal, the State has not required TVA Johnsonville Fossil Plant to limit its discharge of CCW pollutants, monitor CCW disposal areas more frequently, or take any corrective action to reduce or prevent contamination.

Constituents Involved

Aluminum, arsenic, boron, cadmium, chromium, chloride, total dissolved solids, iron, lead, manganese, molybdenum, sulfate

At Risk Population

The Johnsonville Fossil Plant is located near several municipal water intake pipes along the Tennessee River, including the New Johnsonville Municipal Water Intake at River Mile 100.6, and the City of Camden Water Intake at River Mile 100.3. The Ash Ponds and Disposal Areas at Johnsonville discharge through Outfalls and seepage points between River Miles 99 and 101. The Tennessee River and Kentucky Lake are major recreational areas, and several boat launches, wildlife, and recreational areas are nearby.
Although there are over 1,000 households within a 3-mile radius of the TVA Johnsonville Fossil Plant (EPA, 2010) many of whom could be using groundwater as a source of drinking water in residential drinking water wells, the Tennessee Department of Environment and Conservation (TDEC) would not respond to requests for data regarding wells in the vicinity.

Incident and Date Damage Occurred / Identified
Documentation of damage has occurred since 1986

Wastes Present
CCW (Fly ash and bottom ash) from TVA Johnsonville Fossil Plant (TVA, 2009).

Type(s) of Waste Management Unit
TVA has four ash disposal areas at the Johnsonville Fossil Plant, including an unlined island in the Tennessee River, called “Active Ash Disposal Areas 2 & 3,” a dredged ash disposal area that was a pond, a disposal area in the South Railroad Loop that was a landfill, and an abandoned unlined coal ash pond that was covered and closed, north of the Plant (Area A) (Stantec 2009).

Active or Inactive Waste Management Unit(s)
Active and inactive; the island disposal site in the Tennessee River (Ash Disposal Areas 2 & 3) is active; the other three CCW ponds and landfills are inactive and closed.

Hydrogeologic Conditions
The Stantec Engineering Evaluation of Johnsonville Fossil Plant describes the site:

The Johnsonville Fossil Plant is located in west-central Tennessee along the eastern bank of the Tennessee River, just south (upstream) of the confluence of the river and Trace Creek. As such, much of the site is underlain by alluvium and terrace deposits varying in thickness from less than 20 feet along the tributary stream banks up to more than 100 feet within the floodplain of the Tennessee River. The underlying bedrock consists of the Lower Mississippian age Fort Payne Formation and Devonian age Chattanooga Shale and Camden Formations, in general order of descending lithology. The Fort Payne Formation varies from a sandy, cherty limestone in the upper portions of the unit to an interbedded shale and cherty limestone lower in the stratigraphic column. The Chattanooga Shale is a fissile, carbonaceous shale thought to act as an aquitard preventing the downward migration of groundwater, etc. into the underlying Camden formation, the principal aquifer in the region. The Camden formation consists of thin beds of cherty limestone interbedded with softer clay layers. Previous drilling at the site, discussed in reports and other documentation provided by TVA, suggests the presence of several small faults and a larger fault in the bedrock underlying the plant, as inferred from borehole data in the Camden Formation.

In addition, TVA has studied groundwater at Johnsonville and reports that “Local groundwater movement at the plant site is generally from east to west toward the Tennessee River. Groundwater recharge occurs by local infiltration of precipitation at ground surface and laterally from upland areas east of the site. Groundwater passing beneath the site ultimately discharges to the Tennessee River.” TVA also stated that groundwater at the Dredged Ash Disposal Area “generally flows southwestward across the disposal site,” and groundwater at the South Rail Loop Ash Disposal Area “generally flows westward across the disposal site” toward the Tennessee River, and “[g]roundwater passing beneath the site ultimately discharges to the Tennessee River” (TVA 2008, 2007 and 2006).
Additional Narrative
The Johnsonville Fossil Plant has ten coal-fired generating units, and burns approximately 9,600 tons of coal per day. Johnsonville Fossil Plant is the oldest coal plant in Tennessee. Plant construction began in 1949 and was completed in 1952. The Johnsonville Fossil Plant is located on the banks of the Tennessee River at Kentucky Lake.

Sources

TVA. 2010. TVA, Groundwater Monitoring Data for the Active Ash Disposal Area and Abandoned Ash Disposal Area (Area A) (in response to FOIA request dated April 28, 2010).

Entity/Company -Location
Lower Colorado River Authority - Fayette Power Project (Sam Seymour)
6549 Power Plant Road
La Grange, TX 78945-3739
Fayette County
Latitude: 29.915669 Longitude: -96.751510

Determination
Demonstrated damage to groundwater moving off-site (to the southeast and southwest and discharging to Cedar and Baylor Creeks)

Probable Cause
Leaching of coal combustion waste (CCW) contaminants from waste units into underlying groundwater

Summary
Groundwater sampling at LCRA’s Fayette Power Project (FPP) has found levels of selenium, cobalt, and molybdenum exceeding Texas Protective Contamination Levels (PCLs) and federal Maximum Contaminant Levels (MCLs). Selenium levels have reached more than 4 times the PCL and MCL in a well that is probably impacted by the coal ash pond at the site. Cobalt levels have reached more than three times the PCL, and molybdenum has exceeded the federal Lifetime Health Advisory Level by nearly four times and exceeded the PCL in water downgradient of ash disposal areas. Aluminum, chloride, manganese, sulfate, and total dissolved solids (TDS) exceed federal Secondary MCLs (SMCL). The Texas Commission on Environmental Quality (TCEQ) has notified two neighboring landowners that their wells may be contaminated with molybdenum from this site.
Groundwater monitoring at FPP in 2009 revealed elevated levels of aluminum, arsenic, chloride, cobalt, manganese, molybdenum, selenium, sulfate, and TDS. The 2009 Annual Groundwater Monitoring Report submitted by LCRA show concentrations of other heavy metals that exceed Texas PCLs and/or federal MCLs:

- **Cobalt** exceeded the residential and commercial PCLs of 0.0073mg/L and 0.022 mg/L respectively at CBL-138 – a monitoring well about 750 feet downgradient from the CCW landfill – during both samples in 2009. [Note: the wells monitoring the CCW landfill are tested semi-annually while most other monitoring wells at FPP are tested quarterly.] In 2009, the maximum cobalt concentration detected in CBL-138 was 0.0303 mg/L or more than 4 times the residential PCL.

- **Molybdenum** exceeded the residential PCL of 0.122 mg/L at AP-406, a monitoring well downgradient of the coal ash pond, four times during 2009. A review of historical molybdenum results for AP-406, a well downgradient from the ash pond, indicates an increasing trend since monitoring began in 2004. July 2009 was the first time molybdenum concentrations exceeded the PCL. The maximum concentration measured at AP-406 was 0.154 mg/L (nearly four times the federal Lifetime Health Advisory Level of 0.04 mg/L). TCEQ has notified two neighboring landowners of possible molybdenum groundwater contamination.

- **Selenium** exceeded the MCL and commercial and residential PCL of 0.05 mg/L at AP-407 (discussed further below) and RP-67 – a well immediately east of the reclaim pond where waste waters and FGD sludge from the scrubber on Unit 3 of the power plant are sent. There is a steep hydraulic gradient between the reclaim pond (elevation around 400 feet) and RP-67 (groundwater elevations around 322 feet), which is missed by the potentiometric surface map used to show generalized groundwater flow directions. Selenium was previously detected in RP-67, but MCL/PCL exceedances have only occurred since July 2008. The maximum concentration detected in RP-67 was 0.0746 mg/L. Molybdenum concentrations exceeded the PCL also in RP-67 during two groundwater tests conducted in 2009, but exceeded the Federal Health Advisory Level by more than twice during all four groundwater tests in 2009.

LCRA annual groundwater monitoring reports submitted to TCEQ show rising concentrations of selenium in AP-407, the groundwater monitoring well just west of the coal ash pond, but considered upgradient. In the four monitoring tests conducted in 2003, the selenium concentration in AP-407 averaged 0.129 mg/L – more than 2.5 times the federal MCL and the Protective Contamination Level (PCL) set forth in the Texas Risk Reduction Program (TRRP). Selenium concentrations were notably higher in the four samples collected in 2009 which averaged 0.203 mg/L (more than four times the MCL and PCL). The maximum selenium concentration at AP-407 was 0.212 mg/L in 2009.

In a 2005 wastewater permit renewal, TCEQ required LCRA to submit a “Groundwater Selenium Assessment Work Plan” to identify the source of selenium contamination in groundwater. The Work Plan that was submitted (Fayette Power Project, 2005), reported results of additional testing of groundwater in the vicinity of the coal pile to the west of AP-207, which is the only other logical possible source for the selenium. This testing ruled out the coal pile as a source, and additional investigations are underway. The ash pond remains the likely source of the selenium. The actual elevation of groundwater in AP-407 (around 353 feet in 2009) is very close to the elevation of the water in the ash pond (around 350 feet), so relatively minor fluctuations in either the groundwater in the well (downward) and the ash pond (upward) could cause flow from the pond towards AP-407.

Federal SMCLs, which are used in Texas as relevant groundwater standards, were exceeded in downgradient wells for all waste management units at FPP:

- **Aluminum** was detected at 0.361 mg/L and 0.284 mg/L (more than 7 times the SMCL of 0.05 mg/L) at wells downgradient from the CCW landfill.
• **Chloride** was detected at levels exceeding the SMCL at monitoring wells downgradient from the ash pond, class II landfill and CCW landfill. It was also detected at RP-67, a monitoring well hydraulically downgradient from the reclaim pond. Chloride levels were detected in all four quarters in these wells at levels roughly two to seven times the SMCL of 250 mg/L. Chloride levels at CBL-120 and CBL-138, the two monitoring wells downgradient from the CCW landfill, were significantly higher than other monitoring wells at FPP. Each well showed a chloride concentration over 1,400 mg/L (5.6 times the SMCL) in both samples collected in 2009.

• **Manganese** levels were continually found to exceed the SMCL of 0.05 mg/L at downgradient wells from the ash pond, CCW landfill and well affected by the reclaim pond. AP-6, a monitoring well down-gradient from the ash pond, showed levels of manganese at 0.651 – 1.01 mg/L (up to 20 times higher than the SMCL) during four sampling events in 2009.

• **Sulfate** concentrations exceeded the SMCL of 250 mg/L at wells downgradient from all waste management units during all quarters in 2009. Well AP-6, downgradient from the ash pond, had the highest concentrations between 820 – 1,380 mg/L (up to 5.5 times the SMCL).

• **TDS** exceeded the SMCL of 500 mg/L during all four quarters and at all monitoring wells during 2009. The highest exceedance occurred at CBL-138, a well down-gradient from the CCW landfill where TDS levels ranged from 4,120 – 4430 mg/L (8 to 9 times the SMCL).

Constituents Involved
Aluminum, arsenic, chloride, cobalt, manganese, molybdenum, selenium, sulfate, total dissolved solids

At Risk Population
FPP is located on Lake Fayette (a power plant cooling reservoir), which is a popular recreational lake for fishing and boating in central Texas. Oak Thicket Park, located on the lake, offers camp sites, cabins, hiking and biking trails, picnic facilities, a playground, and swimming.

Recently, TCEQ sent out a letter warning private well owners near FPP that their wells may be contaminated with molybdenum. It is not clear whether TCEQ contacted other property owners in the area, such as farmers or nearby wineries.

There are 42 private wells within a two-mile radius and 23 public wells within a five-mile radius of FPP. Drinking water well data was obtained from the Texas Water Development Board, and some data may be missing or incomplete.

Incident and Date Damage Occurred

Since at least 2005, TCEQ has known of groundwater contamination at FPP. In 2009, groundwater monitoring at FPP revealed elevated levels of aluminum, arsenic, chloride, cobalt, manganese, molybdenum, selenium, sulfate, and total dissolved solids.

Regulatory Action

In 2005, TCEQ required LCRA to submit a “Groundwater Selenium Assessment Work Plan” to identify the source of selenium contamination in groundwater at FPP. TCEQ has also sent letters to neighboring landowners to inform them of possible molybdenum contamination in their drinking water wells. TCEQ has not fined or otherwise penalized LCRA for contaminating the groundwater and has not required any corrective action beyond the Selenium Assessment Plan to address contamination. TCEQ has also not required off-site sampling or conducted its own sampling of off-site surface water, groundwater, or domestic wells to determine the extent of potential contamination off-site.

Wastes Present

Fly ash, bottom ash, boiler slag, FGD waste, construction wastes, other non-CCW wastes (Texas Commission on Environmental Quality, 2009)

Active or Inactive Waste Management Unit

FPP has four active Waste Management Units:

1. Coal Ash Pond (contains coal ash from Units 1 & 2, wastewater treatment sludge, boiler slag, and boiler cleaning wastes. The coal ash pond began operation in 1979, and has a storage capacity of 3.7 million cubic yards; in 2009, the pond contained 3.4 million cubic yards of waste);
2. Reclaim Pond (contains wastewater treatment sludge, fly ash from Unit 3, waste wet scrubber sludge, and waste metal cleaning solution);
3. Coal Ash Landfill; and

LCRA has submitted preliminary plans to close the coal ash pond at FPP. It is not known when this will be completed.

Hydrogeologic Conditions

According to LCRA’s Phase I Investigation Reports submitted to TCEQ, “FPP is situated on a ridge between Cedar Creek located to the east, Baylor Creek to the west, and Cedar Creek Reservoir to the north. The site is underlain by three shallow groundwater bearing units (GWBUs) of the Oakville Formation. The shallowest GWBU is the Upper Sand, which is found only in the north and west portions of the site where surface elevations are highest. The second and thirds GWBUs are the Middle Sand and Lower Sand, respectively.
Both of these units are laterally continuous throughout the site and dip to the southeast. The GWBUS are each separated from one another by thick, laterally-continuous clay or clayey strata which appear to possess good confining characteristics. Groundwater recharge to the transmissive units is from direct surface water infiltration in outcrop areas and/or from the Cedar Creek Reservoir adjacent to the north.

Groundwater flow generally follows topography, resulting in variable flow to the southeast and southwest. Groundwater discharges into Cedar Creek, Baylor Creek and its tributaries, as well as flowing into the geologic units that regionally dip to the southeast” (Fayette Power Project, 2009).

Additional Narrative

Arsenic exceeded the MCL and commercial and residential Texas PCLs of 0.01 mg/L at C2L-412 – a monitoring well downgradient of the Class II landfill. In 2009, the maximum concentration of arsenic detected at C2L-412 was more than twice the MCL and PCL at 0.023 mg/L. The MCL and PCL were exceeded during all four groundwater samplings in 2009. C2L-412 monitors a higher aquifer that is not present in the coal combustion waste (CCW) disposal areas. The source of the arsenic contamination is unclear.

Although LCRA has disposed of ash baghouse filters in this landfill, LCRA reportedly does not dump CCW into this landfill. It is unclear if this landfill is still in operation or not. LCRA began dumping in the Class II landfill in 1979. Since then, LCRA has reported dumping waste concrete, brick and wood, waste resin beads, blast media, insulation, empty RCRA containers, cleaning rags, paint waste, metal plating waste, fluorescent lamps, office wastes, and other non-CCW wastes.

Sources

IN HARM’S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

Entity/Company – Location
American Electric Power d/b/a Appalachian Power – Clinch River Plant
Rte. 664 & Rte. 665
Cleveland, VA 24225
Russell County
Latitude: 36.932778 Longitude: -82.198611

Determination
Demonstrated off-site ecological damage to aquatic ecosystems (fish, snails, mussels, and aquatic macroinvertebrates in the Clinch River)

Probable Cause(s)
Initial damage to aquatic ecosystems caused by failure of an ash pond dike. Ongoing stress has occurred from effluent discharges from the Clinch River Power Plant and ash disposal areas.

Summary
In June 1967, an environmental disaster occurred on the Clinch River when a section of coal ash pond dike at the Clinch River Power Plant collapsed releasing a caustic slug of ash slurry that equaled 40% of the daily flow of the Clinch River. The pH of the release was as high as 12.7. Approximately 162,000 fish were killed in a 106 km (65.9 mile) stretch of the Clinch River in Virginia, and an additional 55,000 fish were killed in a 39 km (24.2 mile) stretch of the River in Tennessee. Benthic macroinvertebrates were completely eliminated for a distance of 5 to 6 km (3.1 to 3.7 miles) below the spill site, and drastically reduced in number for 124 km (77 Miles) below the site. Snails and mussels were eliminated for 18 km (11.2 miles) below the power plant.
The Clinch River watershed has an assemblage of freshwater mussel species that is among the most diverse in the world. Unfortunately, forty years after the spill, aquatic ecosystems downstream of the Clinch River Plant remain degraded especially with respect to mussel populations. Much of the present impairment is being caused by high concentrations of copper and aluminum in effluent from the power plant. There is evidence however that high concentrations of aluminum in ash pond effluent also contribute to the present biotic impairment.

Test of Proof

The 300-mile long Clinch River, a major tributary of the Upper Tennessee River system, contains an assemblage of freshwater mussel fauna (unionioids) that is among the most diverse in the world. Sampling performed at selected sites within the Clinch River between 1979 and 1994 found a total of 39 mussel species, six of which were endangered and 14 of which were endemic to the Cumberland Plateau (Ahlstedt and Tuberville, 1997). In the watershed at least four fish and 18 freshwater mussel (Unionoidea) species are listed as either federally endangered, threatened, or of special concern (USEPA, 1997).

In 1967, a 15 to 25 meter (50 to 80-foot) section of a dike surrounding Ash Pond 1A/1B failed. In less than an hour, 400 acre-feet of ash slurry poured into Dump’s Creek which joins the Clinch River only 0.8 km (one-half mile) downstream. This caustic slug equaled 40% of the daily flow of the Clinch River at the time and blocked the normal flow for several minutes. It also raised the water level several meters and forced some of the waste approximately 0.8 km (one-half mile) upstream (Crossman et al. 1973).

The ash from the coal burned at the Clinch River plant had a high free lime (CaO) content, which reacted with water in the settling pond to form Ca(OH)₂, a highly alkaline material. During the release, elevated pH as high as 12.7 (TVA, 1967), was the source of toxicity. The slug of fly ash killed approximately 162,000 fish in a 106 km (65.9 mile) stretch of the Clinch River in Virginia, and an additional 55,000 fish in a 39 km (24.2 mile) stretch of the river in Tennessee. Benthic macroinvertebrates were completely eliminated for a distance of 5 to 6 km (3.1 to 3.7 miles) below the spill site, and drastically reduced in number for 124 km (77 Miles) below the site. Snails and mussels were eliminated for 18 km (11.2 miles) below the power plant (Crossman et al. 1973).

Two years later, the benthic macroinvertebrate communities that were completely eliminated below the power plant had recovered in terms of taxon richness relative to the upstream stations. However, the right bank of the river directly below the plant received continuing effluent discharges and communities there were still impaired (Crossman et. al. 1973).

In contrast to benthic macroinvertebrates, in general the mollusk communities were not as successful in recolonizing the impacted area, having significantly reduced numbers up to 30 km (18.6 miles) downstream of the power plant. Additionally samples from the area affected by the spill had fewer species of insect fauna that are sensitive to pollution than samples from unpolluted reaches of the stream, although it was not possible to discriminate between remnant effects of the spills (there was also a more limited acidic spill in 1970) and chronic stress due to the day-to-day operation of the power plant (Crossman et al. 1974).

An intensive survey of mollusk fauna almost twenty years after the spill found that they were non-existent within the stream section influenced by the Clinch River Plant effluent (Stansbery, et al. 1986). More recent surveys found that native mussels remained absent from the area of influence of discharges from the plant (0.5 to 0.6 km, 1,640 to 1,970 feet, downstream), though recent surveys suggest downstream distributions of native species are closer to the CRP discharge than has been reported previously (Hull, 2002).
In addition to the acutely toxic spill discussed above, high concentrations of metals, most notably copper, in the
effluent discharges from the power plant have been associated with biological impairment. Effluent
concentrations for copper exceeded water quality criteria from 1985 to 1989 (Cherry et al. 1996). The
average concentration was 0.436 mg/L, 33 times the acute WQC (0.013 mg/L), and 48 times the chronic
WQC (0.009 mg/L). Various studies linked these exceedances to depression of enzymatic activity in
transplanted clams (Farris et al. 1988; Belanger et al. 1990) and shifts from pollution-sensitive aquatic insect
species to more pollution tolerant species (Clements et al. 1988; Van Hassel and Gaulke, 1986).
Replacement of cooling tower piping was completed in 1987 and wastewater treatment modifications were
made in 1993 to reduce effluent metals concentrations. Sampling conducted for further ecological studies
from January 2000 to October 2002, measured average concentrations of copper at 0.014 mg/L, slightly
above applicable WQC at the time. During the same time period, aluminum averaged 0.843 mg/L, almost
ten times the chronic WQC of .087 mg/L. (Hull, 2002). These effluent discharges are process waters from the
power plant, not discharges from the bottom ash pond northeast of the plant although high aluminum
concentrations have continued to occur in the discharge from Ash Pond Area 1 discussed below.

Following the reductions in effluent copper, most benthic macroinvertebrate community parameters (e.g.,
richness and diversity) recovered at affected sites from levels that were typically 70% of reference levels to
levels that ranged from 80% to more than 100% of reference levels. However, bivalves remained impaired
downstream, with transplanted mollusks at effluent-affected sites having a typical survivorship of 40% and
growth 20% that of reference sites. Concentrations of aluminum which continued to be measured at almost
ten times the water quality criteria for chronic exposure have been identified as a likely candidate for
continuing impairment of aquatic ecosystems downstream from the Clinch River plant (Hull, 2002).

Crossman et al. (1974) noted the difficulty in discriminating between the effects of the 1967 and 1970 spills
and chronic stress due to effluent discharges of process water from the Clinch River Plant. Ecological studies
from 2000 to 2002 addressed this question by including study sites adjacent to the Ash Pond Area 1
northeast of the plant and the fly ash landfill west of the plant. Hull (2002) found that the most severe biotic
impairment was caused by effluent discharges at the plant itself, which extended to a distance of about 0.6
km (1,970 feet) downstream. Impairment of bivalves was observed but was less evident below the ash
landfill and low-volume leachate from Ash Pond Area 1. Hull (2002) also sampled water quality in Ash Pond
Area 1 to quantify settling efficiency of metals (Al, Cu, Fe, Zn) from the point of influent to the point of
discharge from the second settling pond. Near the point of discharge aluminum was 1.2 mg/L, 1.6 times the
WQC for acute exposure (0.75 mg/L) and 14 times higher than the WQC for chronic exposure (0.087 mg/L).
Throughout the ponds the pH averaged about 10, well above the SMCL maximum of 8.5.

Constituents Involved
pH and aluminum

At Risk Population
The authors are not aware of any attempt to document human exposure to the pollution events at this power
plant. Virginia public well data is closely held and Virginia DEQ would not release the location of any
nearby drinking water wells or information attributed with public wells. Private well data is organized at the
county level with comprehensiveness and data quality varying greatly from county to county. Russell County
has no well records that are electronic or able to be mapped. Well drillers in this county are not required to
report a Latitude/Longitude for a well location, just the address of the property drilled.

Incident and Date Damage Occurred / Identified
June, 1967 (ash pond dike failure). In 1970, a less extensive acid spill took place. As of 2002 high
concentrations of aluminum in effluent from Ash Pond Area 1 continued to stress aquatic ecosystems.
Regulatory Action
None reported related to the ash spill. High concentrations of power plant effluent metals in the late 1980s were addressed by operational changes.

Wastes Present
Fly ash and bottom ash

Type(s) of Waste Management Unit
Bottom Ash Pond Areas 1 and 2 were commissioned in 1964. Pond Area 1 has a surface area of 45 acres. A fly ash landfill also exists at the site.

Active or Inactive Waste Management Unit
Ash Pond Area 1 (from which the spill took place) is active. Bottom Ash Pond 2 was taken out of service in 1998. The fly ash landfill is active. (Appalachian Power, 2009)

Hydrogeologic Conditions
Ash ponds are placed on alluvial sediments of the Clinch River and Middle Fork of Clinch River (also called Dump’s Creek), and the ash landfill is also placed on alluvial sediments of the Clinch River.

Additional Narrative
This damage case has an odd history. EPA identified it as one of only two “documented” cases of CCW disposal sites causing significant harm to the environment in its 1988 Report to Congress (USEPA, 1988). It was also identified as a proven damage case for purpose of the 1993 Regulatory determination, but was then rejected as a damage case for purposes of the 1999 Report to Congress because there was no co-management of other wastes with the CCW. The fact that this site was not included as a damage case in the 1999 Report to Congress led it to be rejected as a damage case in EPA’s CCW Damage Case Assessment Report (USEPA 2007). If this strange logic (that CCW waste disposal sites have to include other non-coal wastes to be classified as a damage case), had been applied to all damage cases in EPA’s 2007 assessment, most would have been rejected. Given the extensive data regarding ecological damage from CCW disposal at the Clinch River Plant, EPA should include this site in its list of CCW damage cases.

Sources

IN HARM’S WAY: Lack of Federal Coal Ash Regulations Endangers Americans and Their Environment

Entity/Company – Location
American Electric Power d/b/a Appalachian Power Company - Glen Lyn Plant
100 Apoco Rd.
Glen Lyn, VA 24093
Giles County
Latitude: 37.371389 Longitude: -80.862222

Determination
Demonstrated off-site damage to surface water and aquatic ecosystems (aquatic macroinvertebrates and bacteria in a receiving stream)

Probable Cause(s)
Discharge of coal combustion waste (CCW) pond effluent to surface stream

Summary
A number of scientific studies in the late 1970s and 1980s documented adverse biological impacts of effluent discharges from the fly ash pond at the Glen Lyn Power Plant in Virginia on a mountain stream before it reaches its confluence with the New River at Glen Lyn. Effluent from the fly ash holding pond, released from the late 1970s to the middle of 1980, caused exceedances of Virginia Water Quality Standards in the River that were more than 30 times the acute Water Quality Criteria (WQC) for cadmium and more than four times the acute WQC for selenium and significantly reduced the taxon (a group of one or more organisms that taxonomists judge to be a unit) richness and diversity of benthic macroinvertebrates in receiving waters.
The high pH of the stream (9.5) was acutely toxic to sensitive aquatic mayfly species, and the structure and metabolic functioning of heterotrophic bacteria was significantly reduced in the stream. After ash pond discharges into the river stopped during the summer of 1980, the benthic macroinvertebrate community showed signs of ecological recovery within ten months. Another study found bioconcentration factors for Duckweed (*Lemna perpusilla*) growing in the coal ash impoundment ranged from 580 for copper to 10,000 for cadmium and nickel, making these metals a potential biological problem to other organisms if the Duckweed was flushed from the pond under high flow conditions.

Test of Proof

The impact on aquatic organisms of the discharge of effluent from a fly ash holding pond at the Glen Lyn Plant (also called a “secondary retaining basin”) into a “receiving mountain stream,” west of the coal ash pond and flowing north into the New River, was the subject of several scientific studies in the late 1970s and until discharges stopped in the summer of 1980. The Glen Lyn Plant is located south of the pond that was studied, at the confluence of the East and New Rivers. When ash pond effluent discharges into the stream peaked in early 1980 the taxon richness and diversity of benthic macroinvertebrates in the stream was significantly reduced (Specht et al. 1984). Mayflies were greatly reduced in numbers in the ash influenced stream and a population shift occurred whereby more pollution-resistant coleopterans flourished. The toxic impacts of the fly ash effluent were due to high total suspended solids (TSS = 102 mg/L), a rise in pH to 9.5, and elevation of trace elements in the stream above Virginia Water Quality Criteria (WQC) as follows (WQC values below assume hardness of 100 mg/L CaCO3):

- **Cadmium** concentrations (0.09 mg/l) were 30 times VA acute WQC of 0.0030 mg/L and 82 times chronic WQC of 0.0011 mg/L;
- **Chromium** concentrations (0.07 mg/l) were close to the VA chronic WQC of 0.074 mg/L; and
- **Selenium** concentrations (0.085 mg/l) more than 4 times VA acute WQC of 0.02 mg/L and 17 times VA chronic WQC of 0.005 mg/L.

The concentrations of some trace metals were excessive in the fly ash influent that entered the holding pond from the electrostatic precipitators (Cairns and Cherry 1983). These concentrations included copper measured at 2.88 mg/l, more than 221 times Virginia’s acute WQC for the protection of aquatic life of 0.013 mg/L and zinc at 2.17 mg/l, 18 times the VA acute WQC of 0.12 mg/L.

The high pH of the ash-influenced stream (9.5, the upper pH limit for Virginia’s WQC standards) was acutely toxic to sensitive mayflies such as *Isonychia bicolor*. The 96-hour acute LC50 value for *Isonychia* (the pH at which half of the exposed mayflies died within 96 hours) was reported to be 9.54 (Peters et al. 1985).

After the discharge of the holding pond effluent into the mountain stream was stopped in the summer of 1980, the benthic macroinvertebrate community showed signs of ecological recovery within ten months.

The structural and functional relationships of heterotrophic bacteria (bacteria which use organic compounds as carbon sources) were also evaluated in the ash effluent impacted stream in 1979 (Larrick et al 1981). The mean percent of chromogenic bacterial forms (bacteria that can be studied using color photography) were significantly altered by heavy ash and fly ash effluent. During the time of maximum fly ash effluent release into the stream in 1979, the heterotrophic bacteria structure and function of glucose assimilation were significantly reduced as well. The study was conducted a year before the high total suspended solids (TSS), trace elements, and alkaline pH discharges that caused significant alteration of the benthic macroinvertebrate community had peaked which might have caused further degradation of the heterotrophic bacterial community structure (Specht et al. 1984).

Clark et al. (1981) studied duckweed (*Lemna perpusilla*) inhabiting the secondary containing basin for bottom ash (also called “heavy” ash) at the Glen Lyn Plant found that the duckweed accumulated heavy and soft metals (cadmium, copper, iron, manganese, zinc, chromium, lead, and nickel) to a much greater extent than levels of these metals found in the water column or basin sediments in laboratory experiments. Calculated bioconcentration...
factors (BCFs) in duckweed ranged from 580 for copper to 10,000 for cadmium and nickel. The capacity of duckweed to accumulate high concentrations of heavy metals from coal fly ash basins could lead to the displacement of the metals on a seasonal basis making them biologically available to other organisms if the duckweed is flushed from the holding ponds under high flow conditions. The metals can also be released through biological elimination when the duckweed is immersed in the receiving drainage system or released upon mortality and decay of the plant material

Constituents Involved
Cadmium, copper, chromium, selenium, zinc, pH, and TSS.

At Risk Population
The authors are not aware of any attempt to document human exposure to pollution events at this power plant. Virginia public well data is closely held and Virginia DEQ would not release the location of nearby residential or commercial drinking water wells, or information attributed with public wells. Private well data is organized at the county level with comprehensiveness and data quality varying greatly from county to county. Giles County has no well records that are electronic or able to be mapped. Well drillers in this county are not required to report a Latitude/Longitude for well location, just the address of the property drilled.

Incident and Date Damage Occurred / Identified
Identified during scientific studies in the late 1970s and early 1980s

Regulatory Action
Unknown

Wastes Present
Bottom ash and fly ash, but primary studies cited here focused on the fly ash pond effluent impacts

Type(s) of Waste Management Unit
Fly ash and bottom ash surface impoundments

Active or Inactive Waste Management Unit
Active. The fly ash pond, commissioned in 1965, is 7.6 acres. The bottom ash pond, commissioned in 1963, is a 5.1-acre multi-pond system where other wastewaters are separately treated in contiguous cells. (Appalachian Power, 2009)

Hydrogeologic Conditions
Both ponds are on alluvial sediments of the New and East Rivers.

Additional Narrative
This ecological damage case was identified in a report prepared for the Hoosier Environmental Council (Cherry et al., 2000), and data from the Cairns and Cherry (1983) are presented in Rowe et al. (2002). The site was not addressed in EPA’s 2007 CCW Damage Case Assessment (USEPA, 2007).

Sources

Entity/Company – Location
Alliant Energy d/b/a Wisconsin Power & Light Company - Columbia Energy Center
W8375 Murray Rd
Pardeeville, WI 53954
Columbia County
Latitude: 43.4864 Longitude: -89.4203

Determination
Demonstrated off-site damage to aquatic ecosystems (aquatic macroinvertebrates in a receiving stream)

Probable Cause(s)
Discharges of toxic coal ash pond effluent to receiving stream

Summary
Ecological studies in the late 1970s identified devastating impacts on aquatic biota in a receiving stream from the discharge of effluent from the coal ash ponds at the Columbia Generating Station in Wisconsin. In 1977, high concentrations of suspended and dissolved solids and potentially toxic heavy metals caused near disappearance of macroinvertebrates 2.2 miles downstream from the effluent discharge point at the ash ponds. Although available data on heavy metal concentrations did not allow calculation of precise exceedances of Water Quality Criteria (WQC), the concentrations of cadmium and copper probably exceeded federal and Wisconsin acute and/or chronic levels for protection of aquatic organisms. Modifications to the treatment of coal and ash slurry effluent at the power plant in 1979 allowed recovery of the macroinvertebrate community, though it was still characterized by a lower total abundance and shift to more pollution-tolerant species.

Note that the upstream site appears to be downstream from the Ash Ponds, but is actually on a stream that enters the affected stream from the east.
Test of Proof
A number of studies conducted by the U.S. Environmental Protection Agency's (USEPA) Environmental Research Laboratory and the University of Wisconsin-Madison's Institute for Environmental Studies from 1974 to 1980 documented detrimental impacts upon the aquatic communities and adverse alterations in population dynamics in a stream receiving effluent discharge from coal ash ponds at the Columbia Electric Generating Station in Columbia County, Wisconsin.

When the Columbia Plant began operations in the mid 1970s, fly ash and bottom ash was slurried into a series of settling basins. Metallic oxides that composed the major reactive portions of the coal ash caused the pH of the slurry water to increase to 10 to 11 standard units and sulfuric acid was added to the effluent to reduce its alkalinity. Following acidification, the coal ash effluent was discharged into a stream that ran south along the east side of Columbia Lake, which received warm water discharged from the Power Plant, before flowing into Rocky Run Creek not far from its confluence with the Wisconsin River. This discharge severely modified stream habitats through precipitation of a chemical floc and increased concentration of suspended and dissolved material including some potentially toxic heavy metals (Andren et al. 1977, Magnuson et al. 1980). Forbes et al (1981) reported that the acidification caused precipitation of elements such as barium, aluminum, and chromium, forming a flocculent which coated the bottom of the ash pit and was carried into the receiving stream. In addition, Forbes et al. (1981) cited increased concentrations of chromium, barium, aluminum, cadmium, and copper downstream of the effluent discharge but information available for review did not include concentration data, so it is not possible to relate these concentrations to applicable water quality criteria. Magnuson et al. (1980) reported the following ranges of concentrations of cadmium and copper in drainage from the ash pond:

- The range of cadmium concentrations of 0.0024 to 0.0029 mg/L, exceeded USEPA's recommended WQC of 0.002 mg/L for acute exposure, and were around 10 times USEPA's WQC of 0.00025 mg/L for chronic exposure. The concentrations may have also exceeded Wisconsin's WQC for chronic exposure in surface waters of 0.00143 to 0.00382 mg/L, depending on hardness. The range of copper concentrations of 0.004 to 0.043 mg/L likely exceeded EPA's WQC criterion of 0.013 mg/L for acute exposure and 0.009 mg/L for chronic exposure (based on 100 mg/L of hardness) and depending on hardness and pH, probably exceeded Wisconsin's acute WQC of 0.00807 to 0.0298 mg/L and chronic WQC of 0.00187 to 0.00572 mg/L, which apply to all surface waters.

Conductivity, elevated in the coal ash effluent by adding sodium bicarbonate to the pulverized coal, provided an easily monitored measure of effluent strength.

Magnuson et al (1981) and Forbes et al. (1981) found that stream habitats receiving effluent concentrations exceeding 1,000 umhos/cm conductivity severely impacted macroinvertebrate populations. In 1977, when conductivity of the ash effluent was at a maximum (2,500 umhos/cm), there was a near disappearance of macroinvertebrates in the receiving stream 2.2 miles downstream from the point of discharge from the ash ponds. The upstream sampling site included 16 taxa and 929 individuals in 1977, while the downstream site 2.2 miles from the ash pond discharge point had four taxa and less than 20 individuals. Webster et al. (1986) conducted a follow-up study of macroinvertebrate abundance and number of taxa in 1980, when process modifications at the plant had reduced the conductivity of effluent to less than 1,000 umhos/cm. That year, the downstream site was similar in taxonomic composition to the 1974 pre-operation community, but had experienced significant shifts in absolute abundance as well as relative abundances of individual taxa. The resulting community was characterized by lower total abundance, and a shift from a community dominated by hydrospychid caddisflies in 1974–1975 to one dominated by the pollution tolerant isopod, Asellus racovitzai, in 1980.

Within three months after the beginning of plant operation, environmental impacts of the ash effluent included elimination or severe reduction of several benthic macroinvertebrate taxa, including a mayfly (Stenacron
interpunctatum, two hydropsychid caddisflies, and a dipteran family (Chironomidae). Two years later, abundance and richness of organisms were further reduced below the effluent discharge. In addition, juvenile scuds (_Gammarus pseudolimnaeus_) were exposed to concentrated ash pit effluent, resulting in 80% mortality. Further studies in the same area that placed crayfish into cages upstream and downstream of the ashpit effluent discharge, found increased concentrations of chromium, selenium, zinc, and iron in crayfish tissues downstream (Forbes et al. 1981).

Constituents Involved
Conductivity (greater than 1,000 umhos/cm up to 2,500 umhos/cm), flocculent (which coated the bottom of the receiving stream), and also cadmium, copper, chromium, barium, aluminum, iron, and zinc

At Risk Population
Private and public well data is maintained by WDNR; however, when WDNR was contacted to supply the number and location of private and public wells in a two- and five-mile radius of the Plant, WDNR stated that it did not have locational data attributed to well logs and that there was no way to tell the number of wells in the area. All private and public well logs are in paper form and WDNR does not anticipate mapping wells or putting them in a computerized database.

Incident and Date Damage Occurred / Identified
A decline in total abundance and number of taxa was found four months after effluent discharge began in 1974, with a near disappearance of all macroinvertebrates in 1977. With modifications to the station’s operations to reduce flocculants in the ash ponds and conductivity in ash pond discharges, most taxa had recovered in 1980 (Webster et al. 1986).

Regulatory Action
No regulatory actions reported. The results of the ecological studies led to modification of methods for treating coal to increase the efficiency of the electrostatic precipitators and reduce the harmful effects of the ash pond effluent.

Wastes Present
Fly ash and bottom ash

Type(s) of Waste Management Unit
Surface impoundments; currently the Columbia Station has an 8.5-acre Primary Ash Pond with a storage capacity of 115,600 cubic yards that is approximately 50% filled, a 16-acre Secondary Ash Pond with a capacity of 329,700 cubic yards that is about 25% filled and a 1-acre Polishing Pond (Alliant Energy, 2009). All three ponds were commissioned in 1975. Recent information provided by Alliant Energy does not indicate whether the ponds are lined or unlined.

Active or Inactive Waste Management Unit
Active

Hydrogeologic Conditions
Groundwater data were not reviewed for this site, but the ash ponds are located in alluvial deposits at the confluence of Duck Creek (north of the Ash Ponds) and Wisconsin River (west of the Ash Ponds).
Additional Narrative

Discharges from the ash ponds are covered by Wisconsin Pollutant Discharge Elimination System (WPDES) permits, for which all discharges “including any water quality exceedances” are interpreted as permitted releases (Alliant Energy, 2009).

In March of 2008, the Sierra Club filed a notice of intent to sue Alliant Energy. The notice claimed that the company did not file applications for air permit renewal on a timely basis and in doing so violated the Clean Air Act. In 2009, as a result of pressure from the Sierra Club and others, the federal government revoked its permit to the Columbia Energy Center. The result could mean that Alliant will be forced to install pollution reduction equipment that will generate more coal combustion waste or it could mean shutting down the Columbia Station.

Sources

Webster, K.E., Anne M. Forbes, and John J. Magnuson. 1986. An Evaluation of Environmental Stress Imposed by a Coal Ash Effluent. EPA/600/S3-85/045. U.S. Environmental Protection Agency, Duluth, MN.

Wisconsin Department of Natural Resources (WDNR). 1997. Surface Water Quality Criteria and Secondary Values for Toxic Substances (Chapter NR 105). [Note that this is the version that is posted on both the WDNR and EPA Region 5 websites. In 2000, EPA disapproved the equations used by WI for copper as being less protective than EPA’s WQC. These were revised by the

Entity/Company – Location
Wisconsin Energy (WE Energies (WE)) d/b/a Wisconsin Electric Power Company – Oak Creek Power Plant
Caledonia, Oak Creek South, and Oak Creek North Coal Ash Landfills
4801 E Elm Rd
Oak Creek, WI 53154
Milwaukee County (Oak Creek North and South Landfills)
Racine County (Caledonia Landfill)
Latitude: 40.839028 Longitude: -87.842264

Determination
Demonstrated damage to off-site drinking water wells

Probable Cause(s)
Leaching of contaminants from coal combustion waste (CCW) landfills into groundwater.

Summary
A dozen private drinking water wells within 1,500 feet of the Oak Creek South and Caledonia coal ash landfills (Landfills) at We Energies’ Oak Creek Power Plant south of Milwaukee have been found to exceed the Wisconsin Department of Natural Resources (WDNR) NR140 Enforcement Standard (ES) of 0.04 mg/L for molybdenum and preventive action limit (PAL) of 0.19 mg/L for boron. Concentrations have been measured as high as 0.124 mg/L total molybdenum, more than 3 times the ES and USEPA’s Lifetime Health Advisory Level.

Since August 2009, We Energies has been providing bottled water to several dozen residences for drinking and cooking due the presence of high molybdenum in residential drinking water wells near the CCW landfills, but no
permanent solution to the contamination has been proposed. WDNR has initiated its own investigation of the problem, but had not taken any regulatory enforcement action as of mid-2010. Although unsafe levels of molybdenum have been present in groundwater since 2002 and WDNR established its ES of 0.04 mg/L for molybdenum in December 2006, We Energies did not inform WDNR or residents that unsafe levels of molybdenum were present in groundwater until August 2009.

Test of Proof
The news media reported serious contamination of private drinking water wells west of the Caledonia Ash Landfill at the Oak Creek Power Plant in late June 2010 (WISN New, 2010; Won, 2010). Although consultants to We Energies have concluded that the molybdenum in the wells is not coming from coal ash in the Caledonia Landfill or other landfills adjacent to the power plant (NRT, 2010), a review of available information strongly supports a conclusion that most, if not all of the molybdenum in the contaminated wells is coming from the coal ash disposal areas. Millions of cubic yards of coal ash have been placed in three large landfills adjacent to the Power Plant, the oldest of which dates back to the mid-1960s. There is also evidence to suggest that wells farther west of the Douglas Avenue and Botting Avenue neighborhoods adjacent to the Caldeonia Landfill, may be affected by CCW dumped farther to the west of the Oak Creek Power Plant landfills. The discussion here focuses on contamination of the dolomite aquifer, which is the source of most, if not all, of the contaminated drinking water wells.

The following evidence provides strong support for a conclusion that the molybdenum in the in the Douglas Avenue and Botting Avenue clusters of contaminated wells is coming from the Oak Creek Power Plant coal ash landfills:

- Sampling of leachate at three different locations in the Caledonia Landfill in 2009 and 2010 found concentration of dissolved molybdenum ranging from 8.8 to 15 mg/L, 220 to 375 times the ES.
- High concentrations of molybdenum have been measured in groundwater monitoring wells northeast of the Oak Creek South Landfill (a dissolved concentration of 0.054 mg/L at W39C—the upper “w” on the satellite photo), and east of the Caledonia Landfill (a dissolved concentration of 0.094 mg/L at MW12D—the lower “w” on the satellite photo). These groundwater monitoring wells are located in coal ash disposal areas that pre-date We Energies permitted CCW landfills.
- The groundwater monitoring wells with molybdenum exceedances were in a highly concentrated area within 1,500 feet of the Oak Creek South and/or Caledonia landfills.
- Maximum boron concentrations in the Douglas Avenue Cluster of residential wells ranged from 0.44 to 0.72 mg/L, up to 3.8 times the Preventive Action Limit (PAL), and the Botting Avenue Cluster of residential wells ranged from 0.37 to 0.52 mg/L, up to 2.7 time the PAL. Boron is a major constituent in fly ash and recent measurements of boron in leachate at the Caledonia Landfill ranged from 3.3 to 41 mg/L, three to 41 times the ES for boron.
- A recently installed groundwater monitoring well (W44—marked “ug” on the satellite photo) in the dolomite aquifer, about 1,500 feet upgradient of the Douglas Avenue and Botting Avenue Clusters, had a maximum concentration of 0.014 mg/L dissolved molybdenum, and relatively low maximum concentration of boron (0.28 mg/L) which does not support the hypothesis there is an upgradient source for the molybdenum.

NRT (2010) presents data on maximum concentrations of molybdenum in private drinking water wells based on sampling from 2007 to 2010. Before September 2009, groundwater samples were analyzed for only dissolved molybdenum, which underestimates the actual exposure to residents using the wells. Starting in September 2009, concentrations of total molybdenum were also tested. The ES established by WDNR for molybdenum applies to total concentrations. Results from private, residential drinking water well sampling is summarized as follows:

- Douglas Avenue Cluster, which also includes a few residential wells on County Line Road where it intersects with Douglas Avenue. These residential drinking water wells are located within 1,000 to 1,500 feet southwest of the Oak Creek South CCW Landfill, which closed in 1992. It is unclear whether this CCW
The analysis of residential drinking water well sampling data by NRT (2010), which only goes back to 2007, focuses on dissolved molybdenum and shows the following:

- In the Douglas Avenue Cluster, 6 of the 10 drinking water wells had maximum molybdenum concentrations higher than the ES of 0.04 mg/L, with the highest measured concentration 0.089 mg/L, more than twice the ES. The well with the highest molybdenum concentrations in the other 4 wells were close to exceeding the standard (80 to 97.5 percent of the standard).
- In the Botting Avenue Cluster 4 of the 7 wells had maximum molybdenum concentrations higher than the ES, with the highest measured concentration 0.046 mg/L. Concentrations in the other 3 wells ranged from 0.023 to 0.35 mg/L.
- Molybdenum concentrations were found in wells more than 1500 feet from the CCW Landfills ranged from non-detectable levels to 0.014 mg/L (south of the CCW Landfills) and from 0.016 to 0.032 mg/L (west and southwest of the CCW Landfills).

Residential drinking water has been sampled from wells in the Douglas Avenue and Botting Avenue Clusters since 1989, but only data from 2002 was available for review. These data show that the number of wells with exceedances of the ES is larger than that shown by NRT (2010):

- As early as May 2002, three wells in the Botting Avenue Cluster exceeded the ES for molybdenum with concentrations ranging from 0.045 to 0.049 mg/L. One of these wells (R17) is not identified as contaminated by NRT (2010).
- As early as May 2003, six wells in the Douglas Avenue Cluster exceeded the ES for molybdenum with concentrations ranging from 0.041 to 0.056 mg/L. This includes two wells (R06 and R07) that were not identified as contaminated by NRT (2010). Although the Wisconsin Enforcement Standard applies to concentrations of total molybdenum, rather than dissolved molybdenum, total molybdenum only began to be measured in 2009. When total molybdenum concentrations are considered, one well in the Douglas Avenue Cluster (R25) should be included in the 0.04 mg/L iso-concentration line that maps the extent of the contaminant plume, with 8 of the 10 wells in that Cluster exceeding the ES. Furthermore, the one sampling event for the well in this Cluster with the highest concentration of dissolved molybdenum (R27) showed significantly higher concentration of total molybdenum (0.124 mg/L, more than 4 times the ES).

Consultants for We Energies (NRT, 2010) have proposed a number of alternative sources for molybdenum in the dolomite aquifer other than the CCW Landfills. Quotes from We Energies’ statements are in italics, and an analysis of their statements follows in plain text below:

- “Naturally-occurring elevated molybdenum concentrations have been found in the Fox River Valley of Wisconsin, where oxidation of sulfide minerals is causing significant water quality issues.” This reference is to an article in Water Well Journal by Riewe et al. (2000). The main focus of the article is arsenic, which has not been identified as an issue in the contaminated wells. Although the article identifies the problem of high arsenic as occurring in dolomite aquifers, an examination of the map showing occurrences of arsenic greater than 0.005 mg/L shows that this is rare occurrence in Racine and Milwaukee Counties, and hence this citation is not applicable to the contaminated well clusters by the CCW landfills.
- “A 1999 review of wells sampled for Minnesota’s Ground Water Monitoring and Assessment Program found that while molybdenum was usually not detected, when detected its concentrations were related to
concentrations of boron and arsenic, suggesting a geologic source. Similar to the Minnesota findings, the bedrock aquifer near the Oak Creek Power Plant also has elevated (higher than PAL, lower than ES) boron concentrations." As stated earlier, the presence of molybdenum associated with arsenic does not apply here. The consultants correctly point out that boron is also a concern in contaminated wells, and the presence and leachability of boron and molybdenum in fly ash is discussed further below.

• “A 2008 study of molybdenum occurrence in British drinking water found that relatively high molybdenum concentrations occurred under conditions where there was either oxidation of sulfide minerals or where reducing conditions were prevalent (both naturally-occurring conditions). Pyrite, a sulfide mineral, was observed in the cores taken for W44 (Figure 8), and low iron concentrations in groundwater suggest potential for locally oxidizing conditions near the Oak Creek Power Plant.” This reference is to an unpublished report by the British Geological Survey (Smedley et al., 2008). A review of this report indicates that high concentrations of molybdenum (greater than 0.07 mg/L) are very rare in Britain (three out of 1,398 samples analyzed, or 0.021%), and that maximum concentrations associated with mine drainage water where oxidation of sulfides has occurred are only 0.006 mg/L. The fact that the maximum concentration of molybdenum measured in W44 where the pyrite was observed in the core is 0.016 mg/L suggests that this process might be a minor natural source for molybdenum in groundwater in the area, but can’t explain the high concentrations in residential wells near the CCW landfills.

The high concentrations of boron in the leachate from the Caldonia Landfill noted above are consistent with the high concentrations of boron found in Illinois Basin bituminous coals compared to coals from other regions. Zillmer and Fauble (2004) and Wu and Chen (1987) found that very high percentages of boron (58-88%) were leachable from Illinois Basin bituminous coal ashes under alkaline conditions. Boron commonly exceeds WDNR groundwater standards in monitoring wells at CCW disposal sites, especially in sites that were active prior to the late 1980s (Zillmer and Fauble, 2004). In Wisconsin, because boron has such a distinctive association with CCW landfills, the only situation where the State recommends testing for boron in private wells is when they are located within one-quarter of a mile of a CCW landfill (WDNR, 2000).

Furthermore, Ainsworth and Rai (1987) found molybdenum to also be strikingly more concentrated in fly ash from eastern bituminous coal compared to western subbituminous coal and lignite. In addition, Dressen et al. (1977) found that molybdenum is also highly leachable from coal fly ash under alkaline conditions.

Consultants for We Energies (NRT, 2010) have presented the following two main arguments for the case that the molybdenum in the contaminated private drinking water wells is not coming from the CCW landfills:

• Vertical profiles in nested monitoring wells that extend to the bedrock show molybdenum concentrations in the overlying till formation that are lower than in the bedrock, whereas the opposite would be expected if the source was an ash landfill on the power plant property.

• Groundwater flow direction in the dolomite aquifer is toward the northeast, from the residential wells toward the landfills, meaning that molybdenum cannot be migrating west in the dolomite aquifer from the landfills toward the residential wells.

However, the migration of contaminants upgradient from the general flow direction can be explained with one or more of the following principles of contaminant hydrogeology:

• Both the glacial till and dolomite have a low primary porosity, so flow of groundwater associated contaminants is concentrated in the secondary porosity, mainly fractures. Groundwater flow in fractured systems often does not follow the average direction of groundwater flow as measured in water levels in wells.

• Concentrations of molybdenum in monitoring wells that are lower in the till formation than in the underlying dolomite would be expected if the monitoring wells are collecting samples of aquifer groundwater in the till rather than from fractures which would concentrate the downward flow of leachate.
As noted in the Hydrogeologic Conditions section (below), there is a strong downward gradient of about 40 feet between groundwater levels in the till and the dolomite. This downward gradient would allow rapid downward migration of contaminants along the preferential pathways created by fractures.

Any pumping of groundwater from a well creates a capture zone that includes water that is downgradient from the well. Collectively the Douglas Avenue and Botting Avenue have created capture zones that extend downgradient to the CCW Landfills. Where fracture flow is present (and the dolomite would not serve as an aquifer if there were not significant secondary porosity and fracture flow occurring), the usual models for estimating capture zones underestimate the distance that downgradient water can be captured, so caution should be used when making theoretical calculations to address this question.

In summary, the available evidence points strongly toward coal ash in the Oak Creek South Landfill and an older coal ash disposal area northeast of that landfill as the primary source of molybdenum in private drinking water wells in the Douglas Avenue Cluster where eight out of ten wells have exceeded the ES. Available evidence suggests that old, pre-permit coal ash disposal areas east of the Caledonia Landfill are the primary source of molybdenum in private drinking water wells in the Botting Avenue Cluster where four of seven wells exceed the ES. Supporting evidence for this conclusion are the high concentrations of molybdenum in the old ash disposal areas (dissolved concentrations of 0.054 and 0.094 mg/L) and very high concentrations of molybdenum in leachate from the Caledonia Landfill (up to 15 mg/L, 375 times the ES).

Constituents Involved
Molybdenum above WDNR NR140 Enforcement Standards (ES) and boron above WDNR Preventive Action Limits (PALs) in private wells and in monitoring wells for adjacent ash disposal areas. WDNR (2010) also identifies manganese and sulfate above ES and arsenic, boron, fluoride, and mercury above PALs in on-site Caledonia Landfill wells.

Incident and Date Damage Occurred / Identified
Molybdenum concentrations exceeded ES, and boron concentrations were above the PAL in multiple private drinking water wells immediately west of the Caledonia Landfill in May 2002, the earliest date for which data were available to review (WIDNR 2002-2010). Actions to address the problem were not taken until 2009.

Regulatory Action
When WDNR began regulating CCW landfills in the late 1980s, coal ash disposal had stopped at the Oak Creek North Landfill and was coming to a close at the Oak Creek South Landfill. Permits issued for those landfills focused on establishment of a groundwater monitoring network and placement of two-foot clay caps to reduce infiltration through the unlined landfills. The discussion here focuses on the molybdenum contamination in private drinking water wells southwest of the Oak Creek South Landfill and west of the Caledonia Landfill, which have been monitored since 1989 for a number of general chemistry parameters, including metals by We Energies as part of local agreements with the City of Oak Creek and Village of Caledonia. WDNR did not establish an ES for molybdenum until December 2006, but at least as early as 2002, monitoring data showed concentrations of boron in multiple wells that exceeded the WDNR PAL for boron of 0.19 mg/L. The first notification to residents that the wells were contaminated was a letter dated August 24, 2009 from Wisconsin Energy Corp. (Won, 2010). The monitoring data for the private wells were also not reported to WDNR until August 2009, at which time We Energies was asked to submit an investigation plan, which was submitted on September 4, 2009, and approved on September 29, 2009. We Energies has been providing bottled water to several dozen residents since that time. NRT, a consultant to We Energies, submitted the results of the investigation on March 30, 2010, which concluded that the hypothesis of migration from coal ash sources is “not supported.” In June 2010, WDNR assigned staff to investigate the problem. To date WDNR has taken no regulatory enforcement action.
Wastes Present
The Caledonia Landfill receives fly ash and bottom ash, flue gas desulfurization by-products (filter cake and off-spec gypsum), and dewatered wastewater treatment plant solids from five power plants operated by WE (Oak Creek, Elm Road, Pleasant Prairie, Valley, and Milwaukee Power). (WI DNR, 2010)

Type of Waste Management Unit
CCW landfill

Active or Inactive Waste Management Unit
Active and inactive. One active (Caledonia) and two inactive landfills (Oak Creek North and Oak Creek South) are located east and north of the Oak Creek Plant. The disposal of CCW in unlined sites was an accepted practice in Wisconsin prior to the promulgation of administrative codes and the establishment of procedures for siting and constructing waste disposal facilities 1988 (Zillmer and Fauble, 2004).

- Caledonia (FID#252108450; license #3232) is approximately 45 acres in size and has an approved capacity of 4,050,000 cubic yards. As of May, 2010, approximately 1.75 million cubic yards had been placed in the landfill. Initial approval for the Plan of Operation was received in August 1987. Phase I design and construction specified a 5-foot-thick compacted clay liner (for completed cells 1, 2, 3, 4, 6 and 8). Phase II specifies construction with a 4-foot-thick clay liner and a geomembrane. Phase II also includes a leachate collection system.
 - Oak Creek North (FID#241219440; license #0414) started operating in the mid 1960s and closed in the late 1970s or early 1980s. It is not clear whether this landfill was lined.
 - Oak Creek South (FID#241219770; license #2357) began receiving ash in 1974 and was closed in 1992 with a two-foot clay cap. Leachate is collected from part of the landfill by gravity drain, which is then pumped to a treatment facility. Clay soil that was excavated in 2005 for the construction of a new power plant was placed on top of this landfill.

Evidence of a liner could not be found for either the Oak Creek North or South Landfills. The Oak Creek Power Plant began operations in the 1950s before permits were required for ash disposal, and other ash disposal areas are located throughout the plant property between the Caledonia and Oak Creek South landfills and Lake Michigan (We Energies, 2002).

Hydrogeologic Conditions
Three major hydrogeologic units are present in the CCW Landfill area:

- Massive clay-rich glacial till of the Oak Creek Formation, with generally low hydraulic conductivity. In the vicinity of the Caledonia Landfill the thickness ranged from 150 to 175-feet thick.
- Sand seams of varying continuity within the glacial till, which represent potential pathways for preferential flow of contaminants. In the area of the Caledonia Landfill, these seams appear to be discontinuous. In the area of the Oak Creek South Landfill, two continuous sand seams ranging in thickness of 5 to 10 feet (upper) and 10 to 20 feet (lower) are present. There are no geologic boring logs to map potential sand extent to the west.
- Dolomite bedrock below the glacial till serves as the uppermost aquifer in the area. Well logs are not available for most of the residential wells west of the landfills where contamination is evident, but available information indicates that most, if not all are screened in the dolomite bedrock.

Near surface groundwater in the glacial till in the area of the Oak Creek South Landfill flows generally to the northwest and southeast, according a plot of groundwater elevations recorded on November 2009. A plot of water levels in several wells in the till from 1994 to 2009 shows groundwater elevations ranging from 680 to 715 feet. Plots of elevations in the intermediate sand seam in the till in the north area of Oak Creek South Landfill and the dolomite (well nests W37 and W39) range in elevation from around 640 to 655 feet. There is a strong downward gradient in hydraulic head in these well nests (about 40 feet) suggesting that rapid downward migration of contaminants would occur if vertical pathways for flow were available. NRT suggests that drops in
water levels in the sand seam and dolomite may have been influenced by dewatering related to construction of new units at the Oak Creek plant in 2005 (NRT 2010). However, similar drops in elevation in the dolomite occurred in the mid-1990s. The very similar elevations and generally parallel fluctuations in the sand seam and the dolomite in the above-mentioned well nests suggest the possibility that the dolomite and sand seam are interconnected hydraulically. (NRT, 2010)

At Risk Population
A dozen wells within 1,500 feet of the Caledonia or Oak Creek South Landfills are seriously contaminated by molybdenum and exceed Wisconsin PALs for boron. Although molybdenum levels in these wells have been known to exceed WDRN N140 Enforcement Standards since at least 2002, it was only in August 2009 that residents were informed that their water was unsafe to drink. We Energies has not yet acknowledged that they are responsible for the contamination, but the company has been providing bottled water to residents in more than two dozen homes (WISN News, 2010 and Won, 2010). There is a large neighborhood with around 100 residences located north of the Oak Creek South Landfill and west of the Oak Creek North Landfill. Although most of this area receives public water from Oak Creek, which comes from Lake Michigan, there are a few private wells. Private and public well data is maintained by WDNR. However, when WDNR was asked the number of private and public wells in a 2 and 5 mile radius, it stated it did not have locational data attributed to well logs, or any way to determine the number of wells in the area. WDNR keeps all private and public well logs in paper form and does not anticipate mapping or putting them in a computerized database.

Additional Narrative
WDNR is in the early stages of its Oak Creek/Caledonia Molybdenum Study. Sampling results in February and March 2010 from 40 private wells by residents in the area using kits provided by the Wisconsin State Laboratory of Hygiene (WSLH, 2010) have identified several more clusters of private wells where the ES for molybdenum and PAL for boron have been exceeded. As discussed earlier, the connection between elevated levels of molybdenum and boron in groundwater with disposal of coal ash in Wisconsin is so strong that the best explanation for the groundwater concentration data for molybdenum and boron, which were available for review at the time of writing, is that one or possibly two additional sources of CCW disposal are located west of the Douglas Avenue and Botting Avenue well clusters. These two additional well clusters are discussed below, but it should be noted that the regional northeast-trending direction of groundwater flow in the dolomite aquifer does not place these clusters upgradient from the Douglas and Botting Avenue well clusters adjacent to the Oak Creek South and Caledonia Landfills discussed earlier.

The Hunts Disposal Landfill, a Superfund site, is located about 1.5 miles west of the Oak Creek South and Caledonia Landfills. At this location municipal and chemical wastes were dumped in an abandoned sand and gravel pit from 1959 until 1974. Molybdenum is not listed as a contaminant of concern for this site (contaminants of concern include arsenic, chromium, and barium.) According to USEPA (2009), “[a]pproximately 40 homes are located within a one-half mile radius of the landfill. A rural community of approximately 150 homes is located west of the site. The community uses local groundwater as a drinking water source. Based on the sampling of the residential wells in the surrounding area, the local water supply is not impacted by the landfill.” However, recent sampling of two private wells on County Line Road immediately north and downgradient of the Hunts Disposal Landfill (WSLH, 2010) found concentrations of molybdenum exceeding the ES (both 0.043 mg/L) and boron exceeding the PAL (0.470 to 0.477 mg/L). Neither arsenic nor chromium, contaminants of concern related to the Superfund Site, were detected in either of these wells (barium was not analyzed), but the levels of molybdenum and boron are similar to those in the CCW contaminated Douglas Avenue and Botting Road well clusters. This suggests that the contamination is coming from CCW disposal in the vicinity rather than the other hazardous wastes that were placed in the Hunts Disposal Landfill.
Recent residential well sampling (WSLH, 2010) indicates another cluster of four wells on Foley Road about halfway between the Hunts Landfill and the Caledonia Landfill (marked at Mo3 on the satellite photo) where the ES for molybdenum is exceeded (0.045 to 0.085 mg/L) as well as the PAL for boron (0.399 to 0.574 mg/L). Several considerations suggest that there may be another area of coal ash disposal in this neighborhood:

- The location of the wells is more cross-gradient than downgradient from the Hunts Disposal Landfill.
- Neither arsenic nor chromium, contaminants of concern for the Superfund Site, were detected in any of the Foley Road well samples.
- The four wells where the ES for molybdenum is exceeded are close together, whereas there are eight other private wells on Foley Road with elevated molybdenum, but not above the ES. This suggests a localized source, rather than the Hunts Disposal Landfill.
- There are unvegetated spots in the vicinity of Foley Road and County Line Road in this area that are suggestive of soil disturbance or placement of fill.

Ongoing investigations should provide additional information that will shed light on the molybdenum and boron contamination of groundwater that is present adjacent to the Oak Creek South and Caledonia Landfills, and areas farther to the west. The Oak Creek Power Plant has been operating since the 1950s.

Sources

Wisconsin Department of Natural Resources (WDNR). 2010. Project Summary, Plan of Operation Modification Approval, We Energies (WE), Caledonia Ash Landfill, Landfill Design Enhancement and Other Modifications, License #3232 (May 19, 2010).

WDNR. 2002–2010. Private Potable Well Groundwater Monitoring Data from WDNR’s Database (provided by Joseph Lourigan, WDNR, to Environmental Integrity Project) (June 29, 2010).

Wisconsin State Laboratory of Hygiene (WSLH). 2010. Laboratory Analyses of Private Wells, Oak Creek/Caledonia Molybdenum Study (Mar. 31, 2010) (PDF file with results of 40 samples by residents using sampling kits provided by WSLH).

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>HUMAN HEALTH IMPACTS</th>
<th>ECOLOGICAL IMPACTS</th>
</tr>
</thead>
</table>
| Arsenic | ● Inorganic arsenic is a known human carcinogen.
 ● Arsenic is also linked to cardiovascular and dermal effects, encephalopathy, and peripheral neuropathy. | ● Arsenic accumulates in freshwater plants and bivalves, where it enters the food supply. |
| Barium | ● Barium can cause gastrointestinal disturbances and muscular weakness.
 ● Ingesting large amounts of barium, dissolved in water, can change heart rhythm, and can cause paralysis and possibly death. | ● Barium affects development of germinating bacterial spores and has a variety of effects on microorganisms, including inhibition of cellular processes. |
| Boron | ● Exposure to large amounts of boron (about 30 g of boric acid) over short periods of time can affect the stomach, intestines, liver, kidney, and brain and can eventually lead to death. | ● Boron enters the food chain through plant absorption. Exposure to large amounts of boron through food or water adversely affects male reproductive organs in animals and can cause birth defects or delayed development. |
| Chromium | ● Chromium VI is a known human carcinogen.
 ● Chromium VI exposure has also caused stomach tumors in humans and animals. | ● Chromium can make fish more susceptible to infection and damage/accumulate in various fish tissues and invertebrates such as snails and worms. |
| Copper | ● High levels can cause harmful effects such as irritation of the nose, mouth and eyes, vomiting, diarrhea, stomach cramps, nausea, and even death. | ● Copper has adverse reproductive, biochemical, physiological, and behavioral effects on aquatic organisms. |
| Manganese | ● Exposure to high levels of manganese can affect the nervous system.
 ● Very high levels of manganese may impair brain development in children. | ● Nervous system and reproductive effects have been observed in animals after high oral doses of manganese. |
| Mercury | ● High mercury levels can permanently damage the brain and other organs.
 ● Mercury can harm developing fetus, causing brain damage, mental retardation, blindness, seizures, and inability to speak. | ● Mercury is easily absorbed through organic tissues and membranes. It easily bio-accumulates and can concentrate as it progresses up food chains. |
| Molybdenum| ● Fatigue; Headaches; Joint Pains | ● Large amounts can cause fetal deformities in animals. |
| Nickel | ● The International Agency for Research on Cancer (IARC) has determined that some nickel compounds are carcinogenic to humans and that metallic nickel may possibly be carcinogenic to humans. | ● Nickel absorption into organisms’ organs and bodies can cause growth defects. |
| Thallium | ● Thallium affects the nervous system, lung, heart, liver, and kidney if large amounts are eaten or drunk for short periods of time.
 ● Temporary hair loss, vomiting, and diarrhea can also occur and death may result after exposure to large amounts for short periods. Thallium can be fatal from a dose as low as 1 gram. | ● Animal reproductive organs, especially the testes, are damaged after drinking small amounts of thallium contaminated water for 2 months. |
| Vanadium | ● Although impacts from ingestion are unclear, workers who breathed vanadium suffered lung irritation, coughing, wheezing, chest pain, runny nose, and a sore throat. | ● Animals that ingested very large doses have died. High levels of vanadium in the water of pregnant animals caused minor birth defects. |
| Zinc | ● Ingesting large doses even for a short time can cause cramps, nausea, and vomiting.
 ● Inhaling large amounts of zinc can cause a short-term disease called metal fume fever. | ● High concentrations of zinc in water have been shown to exert adverse reproductive, biochemical, physiological and behavioral effects on a variety of aquatic organisms. |