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Executive Summary

The United States Environmental Protection Agency (EPA) is presently conducting a review of the
national ambient air quality standards (NAAQS) for particulate matter (PM). These standards are
established for pollutants that may reasonably be anticipated to endanger public health and welfare,
and whose presence in the ambient air results from numerous or diverse mobile or stationary sources.
As part of its periodic review of the PM NAAQS, EPA released in June 2010 two reports: Quantitative
Health Risk Assessment for Particulate Matter and the Second External Review Draft of the Policy
Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards. These
reports are reviewed by the Clean Air Scientific Advisory Committee and help to inform the EPA
Administrator’s decision to revise the air quality standards as appropriate.

The present report seeks to augment the information developed by EPA and to highlight the potential
health benefits that might be realized nationwide from the standards under consideration in the current
NAAQS review. EPA’s risk assessment focused on 15 major urban areas while looking at alternative
annual standards levels of 14, 13, and 12 ug/m3 combined with a daily standard of 35, and two
combinations of an annual and daily standard were analyzed — 13 pg/m?® annual coupled with a 30 pg/m?
daily standard (denoted 13/30) as well as a 12/25 standard. This report evaluates more stringent
standard combinations, including an 11/35 standard put forth in the April 2011 Policy Assessment for
the Review of the PM NAAQS (U.E. EPA 2011). In addition, the risk assessment includes an
abbreviated national-scale analysis using the Environmental Benefits Mapping and Analysis Program

(BenMAP), to examine the representativeness of its 15-city risk assessment.

The goal of the present report is to conduct a national analysis of the mortality and morbidity benefits of
a greater range of annual and daily standards, and to conduct the analysis with the same types of tools
that EPA uses in its own analyses.

To estimate PM, s-related human health impacts, this analysis uses the Benefits Mapping and Analysis
Program (BenMAP), the model which the EPA uses in regulatory benefit analyses (e.g., U.S. EPA2010b).
Abt Associates developed this tool for EPA to analyze the health impacts of national-scale air quality
regulations. BenMAP calculates the difference in air quality between two scenarios, designated as
“baseline” and “control,” in each grid cell for which BenMAP has estimated population exposure to
PM,s. Given the difference in exposure between the two scenarios, BenMAP then calculates the
associated change in adverse health effects, such as premature mortality, using health impact functions.
Table 1 presents key mortality results from the primary analysis by scenario.

Lastly, BenMAP assigns an economic value to these effects. To estimate the economic benefit of the
estimated change in health incidence, BenMAP multiplies the number of adverse cases of a specific type
of effect (e.g., mortality) by its associated unit value and then adjusts for the estimated change in
income over time:

$Benefit = Cases Healt/Z1Effects = Unit Value * Income Adjustment



A reasonable range of estimated results is presented as a 90 percent confidence interval (5™ to 95"
percentiles along with the mean estimate ; however, not all sources of certainty can be quantified. The
estimated population exposure uncertainty is unquantified, and similarly, the uncertainty associated
with the proportional rollback approach used in this analysis is unquantified.

To help avoid over-estimating the likely impacts of alternative standards, conservative assumptions are
used throughout the analysis. When calculating mortality, no effects are assumed to occur below the
lowest measured level found in the study. In addition, the rollback approach used in the present
analysis tends to result in relatively small changes in PM, s levels, in comparison to the rollback
approaches used by EPA (2010a).

Table 1. Updated Air Quality Standards for Fine Particles Will Save Lives : Estimated Premature
Deaths Avoided in U.S. by Alternative PM2.5 Air Quality Standards and Epidemiological Study
(relative to current air quality), Mean and 90% Confidence Interval

Scenario Krewski et al. (2009) Laden et al. (2006)
A15D35 2,540 5,240
(1,850 - 3,220) (2,850 -7,570)
A13D35 3,700 8,190
(2,700 - 4,700) (4,450 — 11,900)
A13D30 6,410 13,500
(4,680 — 8,130) (7,330 — 19,600)
A13D25 16,700 32,700
(12,200 - 21,200) (17,700 — 47,300)
A12D35 6,380 15,000
(4,650 — 8,100) (8,140 — 21,800)
A12D30 7,980 17,500
(5820 —10,100) (9,490 - 25,400)
A12D25 16,800 33,000
(12,300 —21,300) (17,900 — 47,800)
A11D35 11,200 27,300
(8,200 — 14,300) (14,800 - 39,600)
A11D30 12,100 27,900
(8,830 — 15,400) (15,100 — 40,400)
A11D25 17,900 35,700

(13,100 — 22,700)

(19,400 — 51,800)

Bold type highlights options put forth by EPA in its Policy Assessment
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1. Introduction

The United States Environmental Protection Agency (EPA) is presently conducting a review of the
national ambient air quality standards (NAAQS) for particulate matter (PM). These standards are
established for pollutants that may reasonably be anticipated to endanger public health and welfare,
and whose presence in the ambient air results from numerous or diverse mobile or stationary sources.
As part of its periodic review of the PM NAAQS, EPA released in June 2010 two reports: Quantitative
Health Risk Assessment for Particulate Matter (EPA-452/R-10-005) and the Second External Review Draft
of the Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality
Standards (EPA-452/P-10-007). These reports are reviewed by the Clean Air Scientific Advisory
Committee (CASAC) and help to inform the EPA Administrator’s decision to revise the air quality
standards as appropriate.

The present report seeks to augment the information developed by EPA and to highlight the potential
health benefits that might be realized nationwide from the standards under consideration in the current
NAAQS review. EPA’s risk assessment focused on 15 major urban areas while looking at alternative
annual standards levels of 14, 13, and 12 pg/m? combined with a daily standard of 35, and two
combinations of an annual and daily standard were analyzed — 13 pg/m? annual coupled with a 30
pg/m3 daily standard (denoted 13/30) as well as a 12/25 standard. In addition, the risk assessment
conducted an abbreviated national-scale analysis using the Environmental Benefits Mapping and
Analysis Program (BenMAP), using the limited national analysis, which focused on mortality impacts, to
examine the representativeness of its 15-city risk assessment.

In April 2011, EPA published a final Policy Assessment reflecting additional analysis and the comments of
the CASAC and the public on two prior draft documents. The final policy assessment lays out EPA staff
scientists’ recommendations for revised PM, s standards. They proposed somewhat different levels than
used in the risk assessment. Specifically, the policy assessment concluded that the current annual PM, 5
standard of 15 pg/m? should be revised to a level within the range of 13 to 11 pg/m?, with evidence
most strongly supporting a standard in the range of 12 to 11 ug/m°. In addition, staff recommended
retention of the current 24-hour standard of 35 pg/m?® with possible consideration of a revised standard
of 30 pg/m? in conjunction with an annual standard level of 13 pg/m?.

The goal of the present report is to conduct a national analysis of the mortality and morbidity benefits of
a greater range of annual and daily standards, including those recommended in the final Policy
Assessment, and to conduct the analysis, using the same types of tools that EPA uses in its own analyses.
The report is outlined as follows: Section 2 describes the PM, s monitoring data used in this analysis, the
calculation of annual and daily design values, and the approach used to reduce, or rollback, daily PM, 5
values so as to meet alternative standards. Section 3 describes the use of BenMAP in estimating the
avoided health impacts due to meeting more stringent PM, 5 standards, as well as the economic value of
these avoided health effects. Section 4 presents the results of the analysis. Finally, Appendix A details
the health impact functions used in this report; Appendix B provides a brief summary of some of the key
health incidence databases used; and Appendix C describes the population data.
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2. Estimating PM: s Exposure with Alternative
Annual & Daily Standards

To estimate PM, 5 levels in a uniform grid across the United States, this analysis uses the domain from
the Community Multi-Scale Air Quality Modeling System (CMAQ), which has grid cells that are
approximately 12 kilometers by 12 kilometers. CMAQ is one of EPA's preferred air quality modeling
tools.! The first step in estimating PM, s exposure is to work with the monitoring data to develop as
complete a set of data as possible. The second step is to adjust, or roll back each monitor so that it just
meets the prescribed annual and daily standards. The final step is to calculate for each grid cell an
inverse-distance-weighted concentration of the monitors within 60 kilometers of the center of each grid
cell, dropping from consideration any grid cell further than 60 kilometers from a monitor.

The present analysis uses three years of monitoring data so as to follow as closely as possible EPA’s
approach for calculating whether a region is in attainment or not. Note, however, that this analysis
differs in a number of ways from EPA’s (2010a) Quantitative Health Risk Assessment for Particulate
Matter, which evaluates the health impacts of alternative PM, 5 standards. The present analysis is
national in scope, whereas the EPA analysis focuses on 15 urban areas representative of the continental
US.” The present analysis uses monitoring data from 20072009 (the most recent complete set of data
available), while the EPA analysis uses data from 2005-2007. The present analysis combines the three
years of data to calculate design values and then calculates the associated health impacts for each
standard combination. The EPA analysis used the maximum design value in an urban area to calculate
the required percent reduction in ambient PM, 5 to meet the standard combination, determined the
'controlling' standard, and then applied the reduction to a composite monitor in each urban area in each
year individually.® Finally, the present analysis uses a proportional rollback approach to estimate the
percent reduction needed to meet an alternative standard at each monitor, whereas the EPA used a
different proportional rollback approach as well as two other rollback approaches.

Below, there is a description of the monitoring data and how they are rolled back to meet different
combinations of annual and daily standards, and then how the BenMAP model averaged the monitoring
data to estimate exposure in each grid cell.

2.1 Monitoring Data

This analysis relies on the three most recent available years of available quality-controlled ambient air
quality PM, 5 data, 2007 to 2009. For most monitoring sites, three years of data were available for the

! The CMAQ model is described at the EPA website: http://www.epa.gov/ttn/scram/photochemicalindex.htm

> EPA (2010a, Appendix G) also conducted a national benefits analysis, but this was not designed to evaluate the
benefits of alternative scenarios.

* Details on the rollback approaches used by EPA can be found in EPA (2010a) starting on page 3-18.
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calculation of annual and daily design values. For sites with fewer than three years of data, annual and
9g™" percentile calculations were constructed based on available complete years. In some cases, two
nearby sites with incomplete three-year data sets were combined to cover the entire three-year period.
In a couple instances, the annual averages were constructed from multiple years such that all four
seasons were sampled (e.g., winter 2007 through fall 2008, reported as 2008).”

Included in the analysis are all monitors with at least one year of data, in which each quarter in that year
has at least nine daily values. For these monitors, an annual design value was calculated, which is an
average of up to three years of data, using the following series of formulas:

n

Quarterly Average; = 2

i=1

PM,5;
n

where:

wsn

n = number of daily observations in a given quarter “j”.

Annual Averagey, = 2

4
Quarterly Average;
j=1

Averagey,

, Annual
Annual Design Value,, = ¥k, l

where:
| = number of annual averages available for a given monitor “m.”

For each monitor for which an annual design value was calculated, a daily design value was also
calculated. The first step was to count the number of daily PM, s measurements in a given year, and
then, based on this number, to calculate the ogth percentile value:

98" percentile, = NumberDays — TruncationFunction(0.98 * NumberDaysy)

where:

NumberDays, = number of days with daily PM, s values in year “k.”

TruncationFunction = function in Excel that keeps the integers to the left of the decimal point.

An annual peak is then calculated for each year:

Annual Peaky = Large(ArrayPM; s ,, 98 Percentiley)

where:

Array PM,s = array of PM, s values in a given year “k.”

Large = Excel function that identifies a peak value specified, in this case, by the 98" Percentile, value.

* Details on the calculation of design values can be found in 40 CFR, Part 50, Appendix N:
http://edocket.access.gpo.gov/cfr 2009/julqtr/pdf/40cfr50AppN.pdf.

> The PM, s monitor data were downloaded from the U.S. Environmental Protection Agency’s website
(http://www.epa.gov/airexplorer/) between November 15 and November 23, 2010 by John Graham of the Clean
Air Task Force, who then added the data to an Excel spreadsheet. As discussed in the text, he combined some
monitor data, so as to provide as complete a monitor record as possible, and then provided the Excel files to Don
McCubbin for use in this analysis.
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The daily design value is then calculated as an average of the available annual peak values:
l

Daily Design Value,, = z
k=1

Annual Peak;,
l

where:
| = number of annual peak values for a given monitor “m.”

2.2 Rolling Back Monitoring Data to Meet Alternative Air
Quality Standards

For each monitor, the anthropogenic fraction of each daily PM, 5 value was rolled back by the
percentage reductions needed to attain various combinations of annual and daily standards (see Table
2). Following EPA methods in their 2010 Risk Assessment (EPA 2010a), the anthropogenic fraction is
simply the daily value minus the “policy relevant background” or PRB; PRB has regional values as
determined by air quality modeling®. The daily values were reduced until the annual standard was met.
After this initial reduction, if a daily standard was not yet met, then a second round of reductions was
performed to meet the daily standard.

The reduction needed to meet the annual standard was calculated as follows:

annualRollbackFraction = (baselineAnnualDV - annualStandard) / (baselineAnthropogenicAnnualDV)

where:

baselineAnnualDV = annual design value calculated from the unadjusted, or baseline, PM, s monitor
values.

annualStandard = annual ambient air quality standard.

baselineAnthropogenicAnnualDV = annual design value for anthropogenic PM, 5 values, calculated by
first subtracting the PRB from each day, and then calculating an annual design value the same
way as described in the previous section.

For each day above the PRB, the anthropogenic fraction of the daily value was reduced as follows:
adjustedAnthroDay = baselineAnthroDay * (1-annualRollbackFraction)

where:

baselineAnthroDay = daily PM, 5 value minus the PRB.

The PRB was then added back to get an estimate of the daily value after meeting the annual standard.
rollbackDay = adjustedAnthroDay + PRB.

After this initial reduction, the daily design value (“estimatedDailyDV”) was calculated and compared to
the daily standard. If the estimatedDailyDV exceeded the daily standard, then it was reduced as follows:
dailyRollbackFraction = (estimatedDailyDV -dailyStandard) / (estimatedDailyDV - PRB)

® More details are available in Section 3.7 of the Integrated Science Assessment for Particulate Matter (U.S. EPA
2009).
4



where:
estimatedDailyDV = daily design value calculated after meeting the annual standard.

For each day above the PRB, the anthropogenic fraction of the previously reduced daily values was
reduced again, and then the PRB was added, as follows:
finalDailyValue = adjustedAnthroDay * (1-dailyRollbackFraction) + PRB.

After adjusting the monitor values, a new annual average design value was calculated, which was then
used as input to BenMAP. A variation of the above steps was performed for each of the scenarios listed
in Table 2. These scenarios include most of the scenarios analyzed by EPA (2010a), as well as a number
of additional scenarios so as to augment the available information for consideration in the current
NAAQS review.

Table 2. Rollback Scenarios

Name Annual Design Value Daily Design Value Included in EPA (2010a)
(ng/m’) (ng/m’) Risk Assessment*
_Al5 15 - No
_A15D35 15 35 Yes
_A13 13 - No
_A13D35 13 35 Yes
_A13D30 13 30 Yes
_A13D25 13 25 No
_A12 12 - No
_A12D35 12 35 Yes
_A12D30 12 30 No
_A12D25 12 25 Yes
Al 11 - No
_A11D35 11 35 No
_A11D30 11 30 No
_A11D25 11 25 No

Note that as part of a sensitivity analysis some of the scenarios involve just meeting an annual standard (e.g., A15
meets an annual standard of 15 ug/m3). * The EPA (U.S. EPA, 2010a) Risk Assessment includes an analysis of a
14/35 scenario, which is not included here as the Policy Assessment (U.S. EPA, 2011) does not recommend this.

2. 3 Interpolating Monitoring Data to CMAQ 12 km Grid Cells

After loading into BenMAP the monitoring data for the baseline case and for each of the scenarios
described in Table 2, the fixed radius option in BenMAP was used to estimate the air quality in each



CMAQ grid cell that is within 60 kilometers of a monitor.” The fixed radius option works by calculating
an inverse distance-weighted average of the monitoring data within a prescribed distance of the center
of each grid cell. This is described in Appendix C of the BenMAP User Manual (Abt Associates Inc.,
2010).°

There is a tradeoff between choosing a relatively short maximum distance, which may better represent
the exposure estimate, and choosing a relatively large maximum distance, which will increase the
number of people included in the analysis. As noted in Table 3, limiting the interpolation to 60
kilometers captures 91% of the population (ages 30 and up). No estimate of adverse impacts is made
for the population that resides beyond the area with estimated air pollution levels.

Table 3. Population Coverage at Varying Fixed Radius Distances

Fixed Radius 2008 Population Ages 30+  Percent of No Maximum
Distance (million) Distance Population
30 km 135.2 76%

40 km 147.8 83%

50 km 156.5 88%

60 km* 162.5 91%

100 km 173.0 97%

No Maximum 178.0 100%

* Distance used in this report.

’ The California Air Resources Board (2009) used a similar approach when it interpolated monitor values within 50
kilometers of census tracts in their analysis of alternative PM, s standards. The EPA (1999) also used a 50 kilometer
maximum distance when evaluating the benefits of the Clean Air Act.
& An alternative to the fixed radius approach is Voronoi Neighbor Averaging (VNA), which has the option of using a
maximum interpolation distance. The VNA approach uses the Voronoi algorithm to identify nearby or “neighbor”
monitors, and then BenMAP takes a distance-weighted average of these "neighbor" monitors. A downside is that
this approach excludes monitors that are within the specified distance, if there is another monitor between it and
the center of the CMAQ grid cell. Nevertheless, both the fixed radius and VNA approaches give broadly similar
results, generally within 5-10% based on test results using 2007 monitor data.
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3. Estimating Human Health Benefits of Meeting
Alternative PM; s Standards

To estimate PM, s-related human health impacts, this analysis used BenMAP, which the EPA used in its
analysis of alternative ambient air quality standards (e.g., U.S. EPA2010a) and air pollution regulations
(e.g., U.S. EPA2010b). BenMAP calculates the difference in air quality between two scenarios,
designated as “baseline” and “control,” in each grid cell for which BenMAP has estimated population
exposure to PM,s. Given the difference in exposure between the two scenarios, BenMAP then
calculates the associated change in adverse health effects, such as premature mortality, using health
impact functions. Lastly, BenMAP assigns an economic value to these effects.

Table 4 presents the baseline and control scenario pairs used in BenMAP to calculate health impacts.
The next section details the approach used to estimate adverse health impacts. The section after
describes the basic steps involved in calculating and placing an economic value on human health impacts
associated with PM,s.

Table 4. Baseline and Control Scenarios Used to Calculate Health Impacts

Results Name Baseline Scenario Control Scenario
Al5 2007-2009 PM, 5 _A15
A15D35 2007-2009 PM, 5 _A15D35
A13 2007-2009 PM, 5 _A13
A13D35 2007-2009 PM, 5 _A13D35
A13D30 2007-2009 PM; 5 _A13D30
A13D25 2007-2009 PM, 5 _A13D25
A12 2007-2009 PM, 5 _A12
A12D35 2007-2009 PM, 5 _A12D35
A12D30 2007-2009 PM, 5 _A12D30
A12D25 2007-2009 PM, 5 _A12D25
A1l 2007-2009 PM, _Al11
A11D35 2007-2009 PM, 5 _A11D35
A11D30 2007-2009 PM, 5 _A11D30
A11D25 2007-2009 PM, 5 _A11D25

Table 2 describes the baseline and control scenarios.

3.1 Estimating Cases of Adverse Health Impacts

Derived from concentration-response functions reported in the epidemiological literature, health impact
functions quantify the relationship between changes in air pollution and adverse health impacts. A
typical health impact function has four components:



o Effect estimate. An effect estimate (“beta”) quantifies the change in health effects per unit of
change in a pollutant and is derived from an epidemiological study.

e PM,;s change. The estimated change in the concentration of ambient PM, s.

¢ Incidence rate. The baseline incidence rate for the health effect due to all causes.

e Population. The affected population; the age range included depends on the ages included in
the epidemiological study. This analysis used 2008 population estimates, the calculation of
which is described in Appendix C.

The typical log-linear health impact function looks as follows:

1
B exp(Beta * APM2.5)

AHealt/1 = (1 ) * Incidence * Population

Another common form for health impact functions is the logistic, which appears as follows:

1
(1 — Incidence) * exp(Beta * APM2.5) + Incidence

AHealt/1 = (1 —( )) * Incidence * Population
All of the health impact functions used are in one of these two main forms. Both types have the same
four elements. Appendix A derives these two forms and presents details on the derivation of each effect
estimate, and Appendix B describes the health incidence databases used for the calculation of
premature mortality, hospital admissions, emergency room visits, and heart attacks.” Table 5 presents
the PM, s-related health endpoints included in the analysis, which follows the approach currently under
development by EPA for its benefits analyses.

° The incidence and prevalence rates for the other health endpoints, such as acute bronchitis, asthma
exacerbation, and other effects not requiring hospitalization are provided in the derivation of the health impact
functions in Appendix A.
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Table 5. Epidemiological Studies Used to Estimate Adverse Health Impacts of PM; 5

Endpoint Author Age
Mortality, All Cause Laden et al. (2006) 25-99
Mortality, All Cause Pope et al. (2002) 30-99
Mortality, Various* Krewski et al. (2009) 30-99
Mortality, All Cause Woodruff et al. (1997) Infant
Heart Attack, Nonfatal Peters et al. (2001) 18-99
Heart Attack, Nonfatal Pope et al. (2006) 18 - 99
Heart Attack, Nonfatal Sullivan et al. (2005) 18 -99
Heart Attack, Nonfatal Zanobetti and Schwartz (2006) 18 -99
Heart Attack, Nonfatal Zanobetti et al. (2009) 18-99
HA, All Cardiovascular (less Myocardial Infarctions) Bell et al. (2008) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Peng et al. (2008) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Peng et al. (2009) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Zanobetti et al. (2009) 65-99
HA, All Cardiovascular (less Myocardial Infarctions) Moolgavkar (2000b) 18 - 64
HA, All Respiratory Zanobetti et al. (2009) 65-99
HA, Chronic Lung Disease Moolgavkar (2000a) 18 - 64
HA, Asthma Babin et al. (2007) 0-17
HA, Asthma Sheppard (2003) 0-17
Emergency Room Visits, Asthma Mar et al. (1999; 2010) 0-99
Emergency Room Visits, Asthma Slaughter et al. (2005) 0-99
Acute Bronchitis Dockery et al. (1996) 8-12
Lower Respiratory Symptoms Schwartz and Neas (2000) 7-14
Upper Respiratory Symptoms Pope et al. (1991) 9-11
Asthma Exacerbation, Cough Ostro et al. (2001) 6-18
Asthma Exacerbation, Cough Mar et al. (2004) 6-18
Asthma Exacerbation, Shortness of Breath Ostro et al. (2001) 6-18
Asthma Exacerbation, Shortness of Breath Mar et al. (2004) 6-18
Asthma Exacerbation, Wheeze Ostro et al. (2001) 6-18
Work Loss Days (WLD) Ostro (1987) 18- 64
Minor Restricted Activity Days (MRAD) Ostro and Rothschild (1989) 18 - 64

Note: HA = hospital admissions. * The study by Krewski et al. (2009) was used to develop mortality functions for
four mortality endpoints: all-cause, ischemic heart disease, cardiopulmonary, and lung cancer.

Sensitivity Analyses

As a sensitivity analysis, a variety of mortality functions were included in the present study. The primary
estimate is based on studies by Laden et al. (2006) and Krewski et al. (2009) and assumes that no
impacts occurred when the baseline air quality level falls below the lowest measured level (LML) in the
underlying epidemiological studies. This assumption may underestimate benefits as no known
threshold for health effects of PM, s has been identified. Additional results show the impact of relaxing
this restriction. Table 6 presents the LMLs for the mortality studies used in this analysis.

In addition, two estimates are presented for nonfatal heart attacks. One is based on the study by Peters
et al. (2001), which EPA (2004; 2010b) has long used to estimate in regulatory impact assessments. A
second estimate is based on four studies (Sullivan et al., 2005; Pope et al., 2006; Zanobetti and
Schwartz, 2006; Zanobetti et al., 2009), which give an estimate significantly lower than that based on
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Peters et al. This second estimate, based on a number of more recent studies over a broader
geographical area is included in the primary set of results, with the Peters et al. result presented as a
sensitivity analysis.

Table 6. Lowest Measured Levels for Mortality Epidemiological Studies

Epidemiological Study LML (pg/m’)
Pope et al. 7.5
Laden et al. 10
Krewski et al. 5.8

Pooling Health Effect Estimates

When there are several effect estimates for a given health endpoint, these estimates are quantitatively
combined or “pooled” to derive a more robust estimate. This analysis generally used fixed or random
effects models to pool estimates from different studies of the same health endpoint. Fixed effects
pooling simply weights each study’s estimate by the inverse variance, giving more weight to studies with
lower variance. Random effects pooling accounts for both within-study variance and between-study
variability, due, for example, to differences in population susceptibility. The fixed effects model is used
as the null hypothesis, with a statistical test of the data determining whether the null should be
rejected, in which case the random effects model is used.'® Additional details on pooling are provided in
Appendix A.

3.2 Valuing Cases of Health Effects

To estimate the economic benefit of the estimated change in health incidence, BenMAP multiplies the
number of adverse cases of a specific type of effect (e.g., mortality) by its associated unit value and then
adjusts for the estimated change in income over time:

$Benefit = Cases Healt/ZEffects = Unit Value * Income Adjustment

A unit value gives the estimated economic value of the avoidance of a single case of a particular
endpoint — a single death, for example, or a single hospital admission. Unit values are derived from the

economics literature, and come in several varieties.

e For some endpoints, such as hospital admissions, cost of illness (COIl) unit values are used, which
estimate the cost of treating or mitigating the effect. These estimates generally underestimate
the true value of reductions in risk of a health effect, since they include hospital costs and lost
wages, but do not include any estimate of the value of avoided pain and suffering.

e Other endpoints, such as asthma exacerbation, involve willingness to pay (WTP) unit values,
which estimate willingness to pay for reductions in the risk of a health effect.

1% This statistical test is described in the BenMAP User Manual (Abt Associates Inc., 2010, p. 404).
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e Typically value of statistical life (VSL) unit values are used for reductions in risk of premature
mortality.

Several issues arise when determining unit values, such as taking into account inflation and adjusting for
growth in income. The following section discusses these issues.

Issues in Valuation

An air pollution benefit analysis tries to measure the full value to society of better health. There are
different components to this value, including: (1) medical costs, (2) lost productivity when someone
cannot go to work, and (3) pain and suffering. Medical costs and lost productivity are relatively easy to
value, since markets exist where these goods are bought and sold. However, pain and suffering is more
difficult to measure, since there is no market.

Economists have devised alternative approaches to valuing non-market goods. One is an indirect (or
“revealed preference”) approach, whereby one infers the values people place on non-market “goods”
by examining their preferences revealed by their behaviors in associated markets. For a long time
seatbelts were not standard equipment in automobiles, and car buyers needed to specifically order and
pay for them. A market existed and seatbelts had a specific cost. Seatbelts also reduced the risk of
premature mortality, and so economists inferred the value of avoiding premature mortality risk by
studying the associated seatbelt market. There are many other similar examples. Perhaps the most
common is calculating the value of avoiding risk by comparing jobs with different risk levels and
determining how much more people have to be paid to work the riskier job.

Valuing “Statistical Cases” Avoided

Reductions in ambient concentrations of air pollution generally lower the risk of adverse health effects
by a small amount for a large population. The health benefits conferred on individuals by a reduction in
pollution concentrations are, then, actually reductions in the risk of having to endure certain health
problems. This reduction in risk for individuals results in a decrease in the expected number of cases of
the adverse health effect in the population.

Suppose, for example, that a given reduction in particulate matter (PM) concentrations results in a
decrease in mortality risk of 1/10,000. Then for every 10,000 individuals, we expect one fewer death
than would have been expected if PM concentrations had not been reduced. Whose lives will be saved
cannot be known ex ante. We therefore refer to “statistical lives” and, in benefits analysis, the “value of
a statistical life.” Similarly with other adverse health effects, such as hospitalization for a respiratory
iliness, it is reductions in risk that are conferred on individuals and “statistical cases” that are avoided by
a reduction in pollution concentrations.
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In theory, it is the risk reductions resulting from a reduction in pollutant concentrations that should be
valued, and some studies have been designed to estimate individuals’ willingness to pay (WTP)** for
small reductions in risk. Wage-risk studies, for example, use data on wages in occupations with varying
degrees of mortal risk (e.g., from accidents) to tease out estimates of the average willingness to pay for
mortal risk reductions. From this, the “value of a statistical life” can be inferred.

Taking the example above, suppose that a given reduction in PM concentrations results in a decrease in
mortality risk of 1/10,000. If the average WTP for this 1/10,000 decrease in mortality risk is $500, then
the value of a “statistical life saved” is 10,000 x $500, or $5 million. Note that no one individual is willing
to pay $5 million dollars to avoid certain death; instead, 10,000 individuals are each willing to pay $500
to reduce the risk of dying by 1/10,000.

Change over Time in WTP in Real Dollars

The WTP for health-related environmental improvements (in real dollars) could change over time if, for
example, real income changes. Generally, the more income a person has, the more he is willing to pay
for a good or service (although the percent increase in WTP does not necessarily equal the percent
increase in income). If average income (in real dollars) has increased since the time that a wage-risk
study was conducted, for example, it is reasonable to expect that WTP, in real dollars, would have
increased as well. If a WTP estimate is not adjusted for increases (over time) in real income, it will be
biased downward as a result. As a result, this analysis includes an adjustment for income change over
time, following an approach used in EPA analyses."

Economists estimate “elasticities” to describe by what percent WTP goes up for a given percentage
increase in income. As it turns out, these estimated elasticities are much less than one, however, there
is considerable uncertainty over the precise value. This report follows the approach used by EPA in
recent regulatory analyses (U.S. EPA, 2008), which used elasticity estimates that vary by type of health
effect, with relatively minor effects having a smaller elasticity than more severe effects. Multiplying
these elasticities by historical and forecasted income data, EPA developed income adjustment factors
which are used in this report. Table 7 presents the elasticities and associated income adjustment
factors used in this report.

" WTP is a measure of the value an individual places on gaining an outcome viewed as desirable, whether it be
purchased in a market or not. The WTP measure, therefore, is the amount of money such that the individual
would be indifferent between having the good (e.g., avoiding premature death) and having the money.
12 see for example the regulatory impact analysis of the Proposed Federal Transport Rule (U.S. EPA, 2010b).
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Table 7. Elasticity of WTP and Income Adjustment by Type of Health Effect

Health Effect Central Elasticity Estimate Income Adjustment for 2008
Minor Health Effect 0.14 1.030
Severe & Chronic Health Effects 0.45 1.098
Premature Mortality 0.4 1.087

Source: EPA (2005, p. 4-18).

Note that because of a lack of data on the dependence of the cost of illness (COIl) on income and a lack
of data on projected growth in average wages, no adjustments are made to benefits estimates based on
the COIl approach or to work loss days and worker productivity benefits estimates. This lack of
adjustment would tend to result in an under-prediction of benefits in future years, because it is likely
that increases in real U.S. income would also result in increased COI (due, for example, to increases in
wages paid to medical workers) and increased cost of work loss days and lost worker productivity
(reflecting that if worker incomes are higher, the losses resulting from reduced worker production
would also be higher).

Adjusting for Inflation

An adjustment was made for inflation, which increases the nominal value —i.e., the price of goods —
from one year to the next without a corresponding increase in the actual value of those goods. So, for
example, a good that cost $200 in 1996 might cost $250 in 2008. This increase in the nominal price of
the good does not imply an increase in the value of the good, if both prices and incomes have increased
by the same percentage over that time period.

To get all dollar values in year 2008 dollars, this analysis used standard inflation adjusters. In particular,
to adjust WTP estimates, the consumer price index for “all items” (CPI-U “all items”) was used. To adjust
estimated hospital costs, the consumer price index for medical care and services was used (see Bureau
of Labor Statistics website, at: http://data.bls.gov/cgi-bin/surveymost). Similarly, a wage index was used

to adjust for wage inflation.

Mortality Adjustments

The delay, or lag, between changes in PM exposures and changes in mortality rates is not precisely
known. The current scientific literature on adverse health effects, such as those associated with PM, 5
(e.g., smoking-related disease) and the difference in the estimated effect of chronic exposure studies
versus daily mortality studies, suggests that it is likely that not all cases of avoided premature mortality
associated with a given incremental reduction in PM exposure would occur in the same year as the
exposure reduction.

EPA analyses (U.S. EPA, 2006, p. 5-21) have used a 20-year lag structure, with 30 percent of premature
deaths occurring in the first year, 50 percent occurring evenly over years 2 to 5 after the reduction in

3 aAdditional details on the inflation adjustment can be found in the BenMAP User Manual (Abt Associates Inc.,
2010)
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PM, s, and 20 percent occurring evenly over years 6 to 20 after the reduction in PM,;. It should be
noted, however, that the selection of a 20-year lag structure is not directly supported by any PM-specific
literature. Rather, it is intended to be a reasonable estimate of the appropriate time distribution of
avoided cases of PM-related mortality. The distribution of deaths over the latency period is intended to
reflect the contribution of short-term exposures in the first year, cardiopulmonary deaths in the 2- to 5-
year period, and long-term lung disease and lung cancer in the 6- to 20-year period. This is a
conservative approach, as recent work by Schwartz et al. (2008) suggests that most deaths occur within
the first two years of exposure.

Accounting for the lag is important because people are generally willing to pay more for something now
than for the same thing later. They would, for example, be willing to pay more for a reduction in the risk
of premature death in the same year as exposure is reduced than for that same risk reduction to be
received the following year. This time preference for receiving benefits now, rather than later, is
expressed by discounting benefits received later. The exact discount rate that is appropriate (i.e., that
represents people’s time preference) is a topic of much debate. EPA has typically presented results
based on a discount rate of three percent and seven percent; a similar procedure is followed here.

Quantifying the Value of Avoiding Adverse Health Impacts

Table 8 presents the mean estimate of the unit values used in the analysis. The approach used is the
same as that used in recent EPA analyses, and details on the values can be found in the BenMAP User
Manual (Abt Associates Inc., 2010) and in recent EPA regulatory impact assessments (e.g., EPA2010b).
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Table 8. Mean Value for Economic Valuation of Health Endpoints (based on 2008 income and 2008%)

Health Endpoint Age No Discount 3% Discount 7% Discount

Range Used ($) Rate ($) Rate ($)
Mortality* 0-99 -- $7,790,000 $7,010,000
Acute Myocardial Infarction, Nonfatal** 0-24 -- $92,000 $91,100
Acute Myocardial Infarction, Nonfatal** 25-44 - $103,000 $101,000
Acute Myocardial Infarction, Nonfatal** 45 —54 - $109,000 $106,000
Acute Myocardial Infarction, Nonfatal** 55-64 - $190,000 $179,000
Acute Myocardial Infarction, Nonfatal** 65— 99 - $92,000 $91,100
HA, All Cardiovascular (less AMI) 65-99 $29,500 -- --
HA, All Cardiovascular (less AMI) 18-64 $31,700 -- --
HA, All Respiratory 65— 99 $25,600 -- --
HA, Chronic Lung Disease 18-64 $14,600 -- -
HA, Asthma*** 0-64 $10,800 -- --
Asthma ER Visits**** 0-99 $399 - —
Acute Bronchitis 8-12 $458 - -
Lower Resp. Symptoms 7-14 $20 -- --
Upper Resp. Symptoms 9-11 $32 -- --
Asthma Exacerbation 6—-18 S55 -- -
Work Loss Days***** 18-64 $146 -- --
Minor Restricted Activity Days 18-64 S69 -- --

Note: Numbers rounded to three significant digits. HA = hospital admissions. * Mortality value after adjustment
for 20-year lag. **The age-specific acute myocardial infarction unit values are based on an average of two
estimates: one based on Russell (1998) and one based on Wittels (1990). *** Asthma hospital admissions
valuation based on data for ages 0-64 and applied to the age group 0-17. **** Asthma ER visits based on the
average of two studies by Smith et al. (1997) and Stanford et al. (1999). ***** BenMAP uses county-specific
median daily wage; a national average of the county-level results is presented here.
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4. Results

BenMAP calculates the health benefits of alternative standards for grid cell in the CMAQ 12 kilometer
modeling domain. These results were then aggregated to the county and national level. National-level
results are presented here.

Table 9 presents the estimated adverse health impacts avoided nationwide each year by moving from
typical PM, s air quality levels in the period 2007-2009 and attaining a variety of standards. The results
for an annual standard of 15 pug/m?® and a daily standard of 35 pg/m? are in the column denoted A15D35,
and the results for other combinations of annual and daily standards are presented in a similar way in
Table 9. Table 10 presents the dollar value of the avoided health impacts for each of the scenarios
presented in Table 9.

The mortality estimates in Table 9 and Table 10 assume that no deaths occur below the lowest
measured level (LML). This is a relatively conservative assumption. For the Laden et al. (2006) estimate,
with an LML of 10 pg/m?, assuming no effect below the LML reduces the estimated mortality by almost
30 percent for some standards (see Table 11). For Krewski et al. (2009), with an LML of 5.8 pg/m?, the
LML has no effect, while for Pope et al. (2002), with a LML of 7.5 ug/m3, the effect is very small.

To quantify some of the uncertainty in the estimated results, a 90 percent confidence interval (5th to 95"
percentiles) is presented along with the mean estimate. The quantified uncertainty is based on the
estimated uncertainty in the underlying epidemiological studies used in the effect estimates and in the
economic literature used to value the estimated health impacts. It should be noted that not all sources
of uncertainty are quantified. The estimated population exposure uncertainty is unquantified; similarly,
the uncertainty associated with the proportional rollback approach used in this analysis is unquantified.
In its quantitative assessment of alternative standards, EPA (2010a, p. 4-37) noted that the rollback
choice can have a “notable impact” on the results. To provide greater coverage for the variability
associated with rollbacks, EPA used three rollback approaches, “proportional,” “locally focused,” and
“hybrid,” with the “proportional” approach tending to produce the biggest reduction in city-wide PM2.5
levels, and the “locally focused” approach the smallest.** The rollback approach in the present analysis,
though also termed a “proportional” rollback, is generally much more conservative than the

III

“proportional” approach used by EPA, as well as the “hybrid” and “locally focused” approaches, and
tends to generate relatively small reductions in PM, s, as seen in Table 13. The approach here closely
resembles EPA's locally focused approach, except for the spatial averaging. EPA takes a straight average
of the PM changes and applies that result to the entire urban area, while the approach in this report
uses inverse distance weighting of the PM reductions. As a result, the estimated health benefits in the

present analysis will tend to be more conservatively estimated.

 This is noted by EPA (U.S. EPA, 2010a, p. 3-17): “In considering the three rollback methods collectively, the
proportional and locally focused methods represent approaches more likely to capture “bounding” behavior
related to the spatial pattern of future reductions in ambient PM, 5 levels. By contrast, the hybrid approach can be
interpreted as reflecting a more plausible or representative rollback strategy in principle...”
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To help characterize the uncertainty of some of the assumptions made in this analysis, alternative sets
of results are presented. Table 10 presents mortality and nonfatal heart attack valuations with three
percent and seven percent discount rates, the effect of which is relatively minor. Table 11 presents a
range of mortality health impact functions based on Krewski et al. (2009), Laden et al. (2006) and Pope
et al. (2002), and it presents the effect of the LML on the estimated mortality estimates. As noted
above, the LML has a strong effect on the Laden et al. result. Finally, Table 12 presents the pooled
estimate of nonfatal heart attacks used in the primary set of health impact results (Table 9) as well as an
estimate based on the study by Peters et al. (2001), which has been used by EPA in recent regulatory
impact analyses (e.g., EPA2010b) to estimate nonfatal heart attacks. The Peters et al. estimate is much
larger than the pooled estimate; however, the pooled estimate is based on more recent studies from a
greater number of areas, so it is used as the primary estimate.
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Table 9. Adverse Health Impacts Avoided by Meeting Alternative PM; 5 Standards - Mean Number of Cases and 90% Confidence Interval

Effect

Mortality,
Krewski, LML

Mortality,
Laden, LML

Mortality,
Infants

Heart Attack,
Nonfatal

Hospital
Admis.,
Cardiovascular

Hospital
Admis.,
Respiratory

Emergency
Room Visits,
Asthma
Upper
Respiratory
Symptoms

Lower
Respiratory
Symptoms

Asthma
Exacerbation

Work Loss Days

Minor
Restricted
Activity Days

A15D35
2,540

1,850 —
3,220

5,240
2,850 -
7,570
7
3-10
300

60 - 663
708

369 - 1,200
761

455-1,070
1,530

48 - 2980

51,800
16,300 —
87,200
66,500
32,500 —
99,500
244,000
13,200 -
1,280,000
431,000
376,000 —
486,000

2,520,000
2,130,000 —
2,900,000

A13D35
3,700

2,700 -
4,700

8,190
4,450 —
11,900

10

5-15
460

92-1,020
1,120

582 - 1,900
1,220

726 -1,720
2,310

72 - 4,500
70,000
22,000 -
118,000
90,300
44,000 —
135,000
329,000
17,800 —
1,740,000
596,000
519,000 —
672,000
3,490,000
2,950,000 —
4,030000

A13D30
6,410

4,680 - 8,130
13,500
7,330 -
19,600

16

8-24

803

163 - 1,780
1,960

1,020 - 3,330
2,120

1,260 — 2,990
3,960

124 7,730

118,000
37,100 -
198,000

152,000
74,000 —
227,000

554,000
30,000 -

2,920,000

1,020,000
888,000 —
1,150,000

5,970,000
5,050,000 —
6,890,000

A13D25
16,700

12200 - 21200

32,700
17700 -
47300

36
18-54
2,180
448 - 4820
5,420

2820 - 9210
5,890

3500 - 8280
10,400

324 - 20200

279,000
87900 -
470000

358,000
175000 -
536000

1,310,000
71100 -
6900000
2,490,000
2170000 -
2810000

14,700,000
12400000 -
16900000

A12D35
6,380

4,650 —
8,100
15,000
8,140 —
21,800

18
9-27
828
166 — 1,830
2,050
1,070 -
3,470
2,250
1,340 -
3,170
3,980

124-7,780
112,000
35,100 —
188,000
145,000
70,300 —
217,000
525,000
28,400 —
2,780,000
975,000
850,000 —
1,100,000
5,730,000
4,840,000 —
6,610,000

A12D30
7,980

5,820 -10,100
17,500
9,490 —
25,400

21

10-31
1,020
206 - 2,270
2,510

1,310 - 4,260
2,750

1,640 — 3,870
4,930

154 - 9,630
141,000
44,400 -
237,000
182,000
88,600 —
272,000
663,000
35,900 —
3,490,000
1,230,000
1,070,000 —
1,390,000
7,240,000
6,120,000 —
8,350,000

A12D25
16,800

12,300 - 21,300
33,000
17,900 —
47,800

37

18- 55
2,200
451 - 4,850
5,460

2,840-9,280
5,930

3,530- 8,350
10,500

327 - 20,400

281,000
88,600 —
473,000
361,000
176,000 —
540,000
1,320,000
71,600 —
6,950,000
2,510,000
2,190,000 -
2,830,000
14,800,000
12,500,000 —
17,000,000

A11D35
11,200

8,200 — 14,300
27,300
14,800 —
39,600

32

16 - 48
1,490
299 - 3,300
3,730

1,940 - 6,320
4,110

2,450 - 5,800
7,040

219-13,700

187,000
58,900 —
315,000
242,000
118,000 -
363,000
880,000
47,600 -
4,640,000
1,660,000
1,450,000 -
1,870,000
9,770,000
8,260,000 —
11,300,000

A11D30
12,100

8,830 - 15,400
27,900
15,100 -
40,400

33

16 - 49
1,590
320-3,530
3,950

2,060 - 6,700
4,360

2,590 - 6,140
7,510

234 — 14,700

203,000
63,900 —
342,000
262,000
128,000 -
393,000
955,000
51,700 -
5,040,000
1,800,000
1,570,000 —
2,030,000
10,600,000
8,960,000 —
12,200,000

A11D25
17,900

13,100 - 22,700
35,700
19,400 —
51,800

40

20-61
2,350
478 - 5,200
5,830

3,040 - 9,910
6,360

3,780 - 8,950
11,100

347 - 21,700

298,000
93,900 -
502,000
383,000
187,000 -
573,000
1,400,000
75,900 —
7370,000
2,670,000
2,330,000 -
3,010,000
15,700,000
13,300,000 —
18,100,000
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Table 10. Value of Adverse Health Impacts Avoided by Meeting Alternative PM, 5 Standards — Mean Value and 90% Confidence Interval (million

2008 $)
Effect A15D35 A13D35 A13D30 A13D25 A12D35 A12D30 A12D25 A11D35 A11D30 A11D25
Mortality, $19,800 $28,800 $49,900 S$130,000 S$49,700 $62,100 S$131,000 S$87,500 $94,200 $140,000
Krewski, LML, 3% ($2,970 - ($4,330 - ($7,490 - ($19,500 - ($7,460 - ($9,330 - ($19,700 - ($13,100 - ($14,100 - ($20,900 -
DR $46,400) $67,700) $117,000) $306,000) $117,000) $146,000) $308,000) $206,000) $221,000) $328,000)
Mortality, $17,800 $26,000 $44,900 S117,000 S$44,800 $56,000 S$118,000 S$78,800 $84,800 $126,000
Krewski, LML, 7% ($2,670 - ($3,900 - (6,750 - ($17,600 - ($6,720 - ($8,400 - ($17,700 - ($11,800 - ($12,700 - ($18,900 -
DR $41,800) $61,000) $106,000) $275,000) $105,000) $131,000) $277,000) $185,000) $199,000) $295,000)
Mortality, Laden, $40,800 $63,800 $105,000 $254,000 $117,000 $136,000 $257,000 $212,000 $217,000 $278,000
LML, 3% DR ($5,740 - ($8,960 - ($14,800 - ($35,700 - ($16,400 - ($19,100 - ($36,100 - ($29,800 - ($30,500 - ($39,100 -
$100,000) $157,000) $258,000) $625,000) $287,000) $335,000) $630,000) $521,000) $533,000) $683,000)
Mortality, Laden $36,700 $57,500 $94,700 $229,000 $105,000 $123,000 $231,000 $191,000 $196,000 $251,000
LML 7% DR ($5,170 - ($8,070 - ($13,300 - ($32,200 - ($14,800 - ($17,200 - ($32,500 - ($26,800 - ($27,500 - ($35,200 -
' $90,100) $141,000) $233,000) $563,000) $258,000) $301,000) $568,000) $469,000) $480,000) $615,000)
) S58 S87 $135 $309 $153 S176 S314 $272 $279 $347
Mortality, Infants
($8 - $144) ($12-$217) ($19-$336) ($42-5769) ($21-$380) ($24-%438) ($43-$780) ($37-$677) ($38-3694) (347 - $862)
Heart Attack, $34 $53 $93 $257 $97 $120 $259 $176 $188 $277
Nonfatal, 3% DR ($1-$98) ($1-$152)  ($2-5265)  ($5-$725)  ($2-$275)  ($2-$340)  ($5-$730)  ($3-$498)  ($3-$532)  ($5-$783)
Heart Attack, $33 $52 $91 $249 $94 $116 $251 $171 $182 $269
Nonfatal, 7% DR ($1-$97) ($1-$149)  ($2-5261)  ($4-$713)  ($2-%271)  ($2-$334)  ($4-$718)  ($3-$490)  ($3-$523)  ($4-$770)
Hospital Admis., S22 S34 S60 S166 S63 S77 S167 S114 S121 S178
Cardiovascular ($11 - $37) ($18-$58)  ($31-3101) ($87-5280) ($33-$105) ($40-$130) ($87-$282) (S60-$192) ($63-$204)  ($93-$301)
Hospital Admis., S17 S27 S47 S131 S50 S61 S132 S92 S97 S141
Respiratory (811 - $24) ($17-938)  ($29-966)  ($81-%182)  ($31-$70)  ($38-985)  ($81-$183) ($56-$127) ($60-$134) (387 - $196)
Emergency Room $0.6 $0.9 $1.6 $4.1 $1.6 $2.0 $4.2 S2.8 S3.0 S4.4
Visits, Respiratory (¢ _ 41 9) (30 - $1.8) ($0-$3)  ($0.1-$7.9)  ($0-$3.1)  ($0.1-$3.8)  ($0.1-$8)  ($0.1-$5.4) (0.1-$5.8) ($0.1-$8.5)
Upper $1.6 $2.2 $3.7 $8.8 $3.5 $4.5 $8.9 $5.9 $6.4 $9.5
Respiratory ($2.5- ($2.5- ($1.8- ($2.7 -
Symptoms ($0.5-%3.6)  ($0.6-%$4.9) ($1.1-$8.2) $19.5) ($1-$7.8)  ($1.3-%9.8) $19.6) ($1.7 - $13) $14.2) $20.8)

19



Effect

Lower
Respiratory
Symptoms

Asthma
Exacerbation

Work Loss Days

Minor Restricted
Activity Days

Total, 3% DR,
Krewski

Total, 7% DR,
Krewski

Total, 3% DR,
Laden

Total, 7% DR,
Laden

A15D35
$1.3

(0.5 - $2.5)
$13

($1-$71)
$S69

(560 - $78)
$164

($96 - $236)
$20,200
($3,160 -
$47,100)
$18,200
($2,860 -
$42,500)
$41,200
($5,920 -
$101,000)
$37,100
($5,350 -
$90,800)

A13D35
$1.8

(0.7 - $3.3)
S18

(51-597)
$96

($83 - $108)
S227
($133 -
$327)
$29,400
($4,590 -
$68,700)
$26,500
($4,160 -
$62,000)
$64,400
($9,220 -
$158,000)
$58,000
($8,330 -
$142,000)

A13D30
$3.0

($1.2 - $5.6)
S31
(52 -5162)
S163
($143 -
$184)
$389
($227 -
$560)
$50,800
($7,950 -
$119,000)
$45,900
(7,200 -
$107,000)
$106,000
($15,200 -
$260,000)
$95,700
($13,800 -
$234,000)

A13D25

$7.2
($2.8 -
$13.2)
S72
(54 - $384)
S400
($349 -
$451)
S954
($558 -
$1,370)
$132,000
($20,700 -
$310,000)
$119,000
($18,700 -
$279,000)
$257,000
($36,900 -
$629,000)
$232,000
($33,300 -
$567,000)

A12D35
$2.9

($1.1-$5.3)
S29
(82 - $154)
S156
($136 -
$176)
S373
($218 -
$537)
$50,600
($7,910 -
$118,000)
$45,700
(7,160 -
$107,000)
$118,000
($16,800 -
$289,000)
$106,000
($15,200 -
$260,000)

A12D30
$3.6

($1.4-56.7)
S37
(82 - $194)
$198
($172 -
$223)
S471
($275 -
$678)
$63,300
($9880 -
$148,000)
$57,100
($8,960 -
$134,000)
$137,000
($19,700 -
$337,000)
$124,000
($17,800 -
$303,000)

A12D25

$7.2
($2.9 -
$13.3)
S73
(54 - $387)
S403
($351 -
$454)
S961
($562 -
$1,380)
$133,000
($20,800 -
$312,000)
$120,000
($18,900 -
$281,000)
$259,000
($37,200 -
$635,000)
$234,000
($33,600 -
$572,000)

A11D35
$4.8

($1.9 - $8.9)
$49
(83 - $258)
S266
($232 -
$301)
S636
($372 -
$916)
$89,100
($13,900 -
$209,000)
$80,400
($12,600 -
$188,000)
$214,000
($30,600 -
$524,000)
$193,000
($27,600 -
$472,000)

A11D30
$5.3

($2.1-$9.7)
S53
($3 - $280)
$289
($252 -
$326)
S689
($403 -
$992)
$95,900
($15,000 -
$225,000)
$86,600
($13,600 -
$203,000)
$219,000
($31,300 -
$536,000)
$197,000
($28,300 -
$483,000)

A11D25
$7.7

($3 - $14.1)
S77
($4 - $410)
S428
($373 -
$483)
$1,020
($597 -
$1,470)
$142,000
($22,200 -
$332,000)
$128,000
($20,100 -
$300,000)
$281,000
($40,300 -
$688,000)
$253,000

($36,400 -
$620,000)

Results rounded to three digits. Results reflect the use of both a 3 and 7 percent discount rate, as recommended by EPA’s Guidelines for Preparing Economic Analyses and OMB

Circular A-4.
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Table 11. Alternative Mortality Estimates, Mean Number of Cases and 90% Confidence Interval

Description A15 A15D35 A13 A13D35 A13D30 A13D25
Pope, All-Cause, 582 2,530 2,600 3,690 6,330 16,200
LML7.5 (228 - 932) (995 — 4,050) (1,020 - 4,180) (1,450-5910)  (2,490-10,100) (6,380 — 26,000)
582 2,540 2,610 3,700 6,410 16,700

Pope, All-Cause
(228 - 932) (999 - 4,060) (1,020 — 4,180) (1,450-5,930)  (2,520-10,300) (6,570 —26,700)
Laden, All-Cause, 1,450 5,240 6,590 8,190 13,500 32,700
LML 10 (787 - 2,110) (2,850 — 7,570) (3,570-9,580)  (4,450—11,900)  (7,330-19,600) (17,700 — 47,300)
1,490 6,450 6,650 9,430 16,300 42,400

Laden, All-Cause
(806 — 2,160) (3,510 - 9,330) (3,600-9,670)  (5,110-13,700)  (8,840—23,600) (23,000 — 61,400)
Krewski, All-Cause, 582 2,540 2,610 3,700 6,410 16,700
LML 5.8 (424 - 739) (1,850 — 3,220) (1,900 - 3,310) (2,700 — 4,700) (4,680 -8,130) (12,200 — 21,200)
) 582 2,540 2,610 3,700 6,410 16,700

Krewski, All-Cause
(424 - 739) (1,850 — 3,220) (1,900 - 3,310) (2,700 — 4,700) (4,680-8,130) (12,200 - 21,200)
Krewski, Ischemic, 480 1,940 2,030 2,780 4,800 12,200
LML 5.8 (406 - 553) (1,640 - 2,230) (1,710 - 2,340) (2,350 - 3,200) (4,060-5,530) (10,300 — 14,000)
i ) 480 1,940 2,030 2,780 4,800 12,200
Krewski, Ischemic

(406 - 553) (1,640 — 2,230) (1,710 - 2,340) (2,350 - 3,200) (4,060-5,530) (10,300 — 14,000)
Krewski, Cardio., 589 2,510 2,560 3,610 6,230 16,000
LML 5.8 (483 - 694) (2,060 — 2,960) (2,100 - 3,030) (2,960 — 4,260) (5110-7,340) (13,100 — 18,800)
) ) 589 2,510 2,560 3,610 6,230 16,000

Krewski, Cardio.
(483 - 694) (2,060 — 2,960) (2,100 - 3,030) (2,960 — 4,260) (5,110-7,340) (13,100 - 18,900)
Krewski, Lung 74 330 361 507 878 2,390
Cancer, LML 5.8 (40 - 109) (175 - 483) (190 - 530) (267 - 743) (464 — 1,290) (1,260 - 3,490)
Krewski, Lung 74 330 361 507 878 2,390
Cancer (40 - 109) (175 - 483) (190 - 530) (267 - 743) (464 — 1,290) (1,260 — 3,490)
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Description

Pope, All-Cause,
LML 7.5

Pope, All-Cause

Laden, All-Cause,
LML 10

Laden, All-Cause

Krewski, All-
Cause, LML 5.8

Krewski, All-
Cause

Krewski,
Ischemic, LML
5.8

Krewski, Ischemic

Krewski, Cardio.,
LML 5.8

Krewski, Cardio.
Krewski, Lung
Cancer, LML 5.8

Krewski, Lung
Cancer

Al12

5,590

(2,190 - 8,970)
5,590

(2,190 - 8,970)
14,200

(7,680 — 20,600)
14,300

(7,720 - 20,700)
5,590

(4,080 — 7,100)
5,590

(4,080 — 7,100)
4,170

(3,530 — 4,810)
4,170

(3,530 — 4,810)
5,410

(4,430 - 6,380)
5,410

(4,430 - 6,380)
804

(424 - 1,180)
804

(424 —1,180)

A12D35
6,370

(2,500 — 10,200)
6,380

(2,510 - 10,200)
15,000

(8,140 — 21,800)
16,300

(8,810 — 23,600)
6,380

(4,650 — 8,100)
6,380

(4,650 — 8,100)
4,690

(3,960 — 5,400)
4,690

(3,960 — 5,400)
6,160

(5,050 - 7,260)
6,160

(5,050 - 7,260)
911

(480 - 1,340)
911

(480 — 1,340)

A12D30

7,900

(3,100 — 12,700)
7,980

(3,130 - 12,800)
17,500

(9,490 — 25,400)

20,300
(11,000 —
29,400)

7,980

(5,820 — 10,100)
7,980

(5,820 — 10,100)
5,840

(4,940 — 6,730)
5,840

(4,940 - 6,730)
7,690

(6,300 - 9,060)
7,690

(6,300 - 9,060)
1,130

(595 - 1,650)
1,130

(595 — 1,650)

A12D25

16,400
(6,430 — 26,200)
16,800
(6,620 — 26,900)
33,000
(17,900 —
47,800)
42,700
(23,200 -
61,800)
16,800
(12,300 —
21,300)
16,800
(12,300 —
21,400)
12,200
(10,400 —
14,100)
12,300
(10,400 —
14,100)
16,100
(13,200 —
19,000)
16,100
(13,200 —
19,000)
2,410
(1,270 - 3,520)
2,410

(1,270 - 3,520)

All

10,600
(4,180 - 17,100)
10,600
(4,180 - 17,100)

26,900
(14,600 —
39,000)

27,100
(14,700 —
39,300)

10,600

(7,770 - 13,500)
10,600

(7,770 - 13,500)
7,750

(6,550 — 8,930)
7,750

(6,550 - 8,930)
10,200

(8,360 — 12,000)
10,200

(8,360 — 12,000)
1,560

(825 - 2,290)
1,560

(825 — 2,290)

A11D35

11,200
(4,410 - 18,000)
11,200
(4,410 - 18,000)

27,300
(14,800 —
39,600)

28,600
(15,500 —
41,500)

11,200

(8,200 — 14,300)
11,200

(8,200 — 14,300)
8,120

(6,870 - 9,360)
8,120

(6,870 - 9,360)
10,800

(8,820 — 12,700)
10,800

(8,820 — 12,700)
1,640

(867 — 2,410)
1,640

(867 — 2,410)

A11D30

12,000
(4,720 - 19,200)
12,100
(4,750 — 19,400)

27,900
(15,100 —
40,400)

30,800
(16,700 —
44,600)

12,100

(8,830 — 15,400)
12,100

(8,830 — 15,400)
8,680

(7,340 — 10,000)
8,680

(7,340 - 10,000)
11,600

(9,480 — 13,600)
11,600

(9,480 - 13,600)
1,760

(929 - 2,580)
1,760

(929 - 2,580)

A11D25

17,400
(6,860 — 27,900)
17,900
(7,050 — 28,700)
35,700
(19,400 —
51,800)
45,500
(24,700 —
65,800)
17,900
(13,100 —
22,700)
17,900
(13,100 —
22,700)
12,900
(10,900 —
14,900)
12,900
(10,900 —
14,900)
17,100
(14,000 —
20,100)
17,100
(14,000 —
20,200)
2,580
(1,370 - 3,780)
2,590

(1,370 — 3,790)
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Table 12. Alternative Nonfatal Heart Attack Estimate, Mean Number of Cases and 90% Confidence Interval

Author A15
Pooled 69
Estimate (14 -

153)
Peters et 543
al. (2001) (202 -

874)

A15D35

300
(60 -
663)
2,330
(876 -
3,720)

Al13

333
(67 -
738)
2,630
(977 -
4,240)

A13D35

460
(92-
1,020)
3,600
(1,350 -
5,790)

A13D30

803
(163 -
1,780)

6,280
(2,350 —
10,100)

A13D25

2,180
(448 —
4,820)

17,000
(6,390 —
27,200)

Al12

738
(148 —
1,630)

5,820
(2,160 —
9,370)

A12D35

828
(166 —
1,830)

6,510
(2,420 -
10,500)

A12D30

1,020
(206 —
2,270)

8,020

(3,000 —

12,900)

A12D25

2,200
(451 -
4,850)

17,200

(64,30 -

27,400)

All

1,430
(286 -
3,160)

11,200
(4,170 -
18,000)

A11D35

1,490
(299 -
3,300)

11,700
(4,370 -
18,800)

A11D30

1,590
(320-
3,530)

12,500
(4,670 —
20,000)

A11D25

2,350
(478 -
5,200)

18,300
(6,880 —
29,300)

Results rounded to three digits.
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Table 13. PM2.5 Levels by City, Comparison of Present Analysis & EPA (2010a)

Baseline Minus PM, ; Level in Scenario (ug/ms)

Source of Rollback Baseline
City Results (ug/m®) A15D35 A13D35 A12D35 A13D30  A12D25
Atlanta Present Analysis 13.3 0.0 04 13 04 1.7
EPA - Proportional 15.3 1.1 3.0 3.9 3.0 4.1
Baltimore Present Analysis 12.3 0.0 0.1 0.5 0.4 2.0
EPA - Proportional 0.8 2.3 3.2 2.6 4.4
EPA - Hybrid 13.9 0.9 2.1 3.0 2.7 4.5
EPA - Locally Focused 0.3 3.9
Birmingham Present Analysis 13.1 0.0 0.5 11 0.6 2.1
EPA - Proportional 3.0 4.7 5.5 4.7 6.3
EPA - Hybrid 15.7 15 34 4.3 34 5.0
EPA - Locally Focused 4.3
Dallas Present Analysis 10.7 0.0 0.0 0.0 0.0 0.2
EPA - Proportional 11.4 0.0 0.0 0.7 0.0 0.7
Detroit Present Analysis 12.1 0.0 0.1 0.3 0.6 2.3
EPA - Proportional 2.5 3.3 4.1 4.0 5.6
EPA - Hybrid 13.9 2.2 2.4 33 3.8 5.4
EPA - Locally Focused 1.4 2.9 4.7
Fresno Present Analysis 16.4 5.8 5.8 5.8 7.3 8.7
EPA - Proportional - 7.5 7.5 7.5 8.8 10.1
EPA - Locally Focused 7.1 7.1 7.1 8.5 9.9
Houston Present Analysis 12.6 0.0 0.4 0.9 0.4 1.0
EPA - Proportional 13.2 0.7 2.3 3.1 2.3 3.1
Los Angeles Present Analysis 14.0 1.3 1.5 2.2 2.8 4.4
EPA - Proportional 5.1 5.1 5.6 6.4 7.6
EPA - Hybrid 14.6 4.1 4.3 5.1 5.5 6.9
EPA - Locally Focused 2.5 2.5 4.0 5.5
New York Present Analysis 12.1 0.1 0.3 0.6 0.6 23
EPA - Proportional 2.2 2.5 3.4 3.8 54
EPA - Hybrid 13.8 2.0 2.5 3.4 3.6 5.3
EPA - Locally Focused 0.5 2.2 4.0
Philadelphia Present Analysis 12.4 0.0 0.1 0.6 0.4 2.1
EPA - Proportional 134 1.1 1.8 2.7 2.7 4.4
EPA - Locally Focused 0.4 2.1 3.9
Phoenix Present Analysis 9.5 0.1 0.2 0.2 0.2 0.6
EPA - Proportional 5 0.0 0.0 0.5 0.6 2.1
EPA - Locally Focused 0.2 0.9
Pittsburgh Present Analysis 13.4 0.6 0.9 1.6 1.5 3.3
EPA - Proportional 14.9 3.3 3.7 4.4 4.9 6.5
EPA - Locally Focused 1.7 3.1 3.7 3.5 5.3
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Baseline Minus PM, ; Level in Scenario (ug/ms)

Source of Rollback Baseline
City Results (ug/m®) A15D35 A13D35 A12D35 A13D30 A12D25
Salt Lake City ~ Present Analysis 104 1.9 1.9 1.9 2.8 3.8
EPA - Proportional e 3.9 3.9 3.9 4.8 5.8
EPA - Locally Focused 1.7 1.7 1.7 2.6 3.7
St. Louis Present Analysis 12.8 0.0 0.1 0.8 0.2 1.5
EPA - Proportional 14 3.0 3.9 3.2 5.0
EPA - Hybrid 143 0.8 2.6 3.5 2.6 4.4
EPA - Locally Focused 0.2 1.9 3.9
Tacoma Present Analysis 9.2 1.3 1.3 1.3 2.0 2.7
EPA - Proportional 9.7 1.7 1.7 1.7 2.7 3.7
EPA - Locally Focused 1.7 1.7 1.7 2.7 3.7

Note: The EPA estimates are from Table F-50 of EPA (2010a), which presents results based on 2007 monitoring data. The

results for the present analysis are a population-weighted (ages 30+) estimate of PM, 5 based on data for 2007-2009.
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Appendix A. Human Health Impact Function
Details

This appendix presents the derivation of the two main health impact functions used in this analysis (log-
linear and logistic), as well as details on each function used.

A.1 Deriving Health Impact Functions

Presented below is a derivation of the mean coefficient estimates for log-linear and logistic health
impact functions.

Log-Linear Derivation

Y, = Incidence under baseline conditions
y. = Incidence under control conditions

Ay =Y, =Y.

PM, = PM levels under baseline conditions
PM_. = PM levels under control conditions
APM =PM, -PM,

In(y) =a+ PM

y = Be™
yozBeﬂPMO

y, = Be™

Ay = Be™s —Be”™:

M
Be”M:

Be/™o

Ay = Be™o .| 1
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Ay =B -(1—eﬁ'(PMc "’Mo)j

Ay = Be"™o _(1_e—ﬂAPM )
-y, e

1
Ay =Y, .(1_eﬂwj

Logistic Derivation

Y, = Incidence under baseline conditions
Yy, = Incidence under control conditions

Ayzyo_yc

PM, = PM levels under baseline conditions
PM_ = PM levels under control conditions
APM =PM, -PM,

X = vector of explanatory variables
B = vector of coefficients
S = coefficient of the PM variable

e’ 1
Y= (1+ e J S 1+e®

( 1 ]
—-XB
odds = y _ \l+e

1-y 1
l_(1+eXBj

(o)
-XB
odds = l+e 1 XB

e B o g XB =€
1+e™™®

o XoB

e

B e}’ _ePMOﬁ _APMp

odds ratio = KB P e
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A.2 PMz5; Human Health Impact Functions

This analysis uses a range of health impact functions, including those used to estimate premature
mortality, chronic bronchitis, and hospital admissions. These health impact functions are the same ones
used in recent EPA analyses (e.g., U.S. EPA2010b). Presented below is a table with the health impact
functions used to estimate PM, s-related adverse health effects. Following the table is a brief summary
of each of the studies along with details not in the summary table.

Some additional details should be noted regarding the calculation of heart attacks and cardiovascular
hospital admissions. Rosamond et al. (1999) report that approximately six percent of male and eight
percent of female hospitalized heart attack patients die within 28 days (either in or outside of the
hospital). As a result, this analysis assumes that 93 percent of heart attacks are not fatal and that
nonfatal heart attacks result in a hospitalization. In addition, the studies used to estimate hospital
admissions for all cardiovascular causes reported results that include ICD code 410 (heart attack). Since
this analysis estimates avoided nonfatal heart attacks separately, ICD code 410 was excluded from the
baseline incidence rate used in the calculation of hospital admissions for all cardiovascular causes, so as
to avoid double counting heart attack hospitalizations.

29



Table 14. Details of PM;; Human Health Impact Functions

Endpoint Name Study Location Age Beta Std Error Functional Form
Adult mortality, All-Cause Laden et al. (2006) 6 cities 25-99 0.01484  0.00417 Log-linear
Adult mortality, All-Cause Pope et al. (2002) 51 cities 30-99 0.00583  0.00216 Log-linear
Adult mortality, All-Cause Krewski et al. (2009) 116 cities 30-99 0.00583  0.00096 Log-linear
Adult mortality, Cardiopulmonary Krewski et al. (2009) 116 cities 30-99 0.01222 0.00135 Log-linear
Adult mortality, Ischemic Heart Disease Krewski et al. (2009) 116 cities 30-99 0.02151 0.00206 Log-linear
Adult mortality, Lung Cancer Krewski et al. (2009) 116 cities 30-99 0.01310 0.00379 Log-linear
Infant mortality, All-Cause Woodruff et al. (1997) 86 cities 0-0 0.00392  0.00122 Logistic
Heart Attack, Nonfatal Peters et al. (2001) Boston, MA 18-99 0.02412  0.00929 Logistic
Heart Attack, Nonfatal Pope et al. (2006) \llJV_I?satch Front, 18-99  0.00481  0.00199 Logistic
Heart Attack, Nonfatal Sullivan et al. (2005) King County, WA  18-99 0.00198 0.00224 Logistic
Heart Attack, Nonfatal Zanobetti et al. (2009) 26 cities 18-99 0.00225  0.00059 Log-linear

Zanobetti and Schwartz Boston, MA 18-99 0.00530 0.00221 Logistic
Heart Attack, Nonfatal

(2006)
HA, All Cardiovascular (less AMI) Bell et al. (2008) 202 counties 65-99 0.00080 0.00011 Log-linear
HA, All Cardiovascular (less AMI) Peng et al. (2008) 108 counties 65-99 0.00071  0.00013 Log-linear
HA, All Cardiovascular (less AMI) Peng et al. (2009) 119 counties 65-99  0.00068  0.00021 Log-linear
HA, All Cardiovascular (less AMI) Zanobetti et al. (2009) 26 cities 65-99 0.00189  0.00028 Log-linear
HA, All Cardiovascular (less AMI) Moolgavkar (2000b) Los Angeles, CA 18-64 0.00140 0.00034 Log-linear
HA, All Respiratory Zanobetti et al. (2009) 26 cities 65-99 0.00207  0.00045 Log-linear
HA, Chronic Lung Disease Moolgavkar (2000a) Los Angeles, CA 18-64 0.002200 0.00073 Log-linear
HA, Asthma Babin et al. (2007) Washington, DC  0-17 0.00200 0.00430 Log-linear
HA, Asthma Sheppard (2003) Seattle, WA 0-17 0.003324 0.00105 Log-linear
Emergency Room Visits, Asthma Mar et al. (1999; 2010) Tacoma, WA 0-99 0.005603 0.00210 Log-linear
Emergency Room Visits, Asthma Slaughter et al. (2005) Spokane, WA 0-99 0.002956 0.00271 Log-linear
Acute Bronchitis Dockery et al. (1996) 24 communities  8-12 0.027212 0.017096 Logistic
Lower Respiratory Symptoms Schwartz and Neas 6 U.S. cities 7-14 0.019012 0.006005 Logistic

(2000)
Upper Respiratory Symptoms Pope et al. (1991) Utah Valley 9-11 0.0036 0.0015 Logistic
Asthma Exacerbation, Cough Ostro et al. (2001) Los Angeles, CA 6-18 0.000985 0.000747  Logistic
Asthma Exacerbation, Cough Mar et al. (2004) Spokane, WA 6-18 0.01906  0.00983 Logistic
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Endpoint Name Study Location Age Beta Std Error Functional Form
Asthma Exacerbation, Shortness of Ostro et al. Los Angeles, CA 6-18 0.002565 0.001335 Logistic

Breath

Asthma Exacerbation, Shortness of Mar et al. (2004) Spokane, WA 6-18 0.01222  0.01385 Logistic

Breath

Asthma Exacerbation, Wheeze Ostro et al. Los Angeles, CA 6-18 0.00194 0.00080 Logistic

Work Loss Days (WLD) Ostro (1987) Nationwide 18-64 0.00460  0.00036 Log-linear
Minor Restricted Activity Days (MRAD) Ostro & Rothschild Nationwide 18-64 0.00741  0.00070 Log-linear

(1989)
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Mortality, All Cause (Laden et al., 2006)

Laden, et al. performed an extended mortality follow-up for eight years in a period of reduced air
pollution concentrations using data from the Harvard Six Cities adult cohort study. They used annual
city-specific PM, s concentrations measured from1979-1988, and estimated the air quality data for the
subsequent eight years using publicly available data. The authors used a Cox proportional hazards
regression controlling for individual risk factors to examine the relationship between long-term
exposure to PM, s and mortality. Laden, et al. found a significant increase in the overall mean mortality
associated with a 10-pg/m? increase in PM, s (Laden et al., 2006).

The coefficient and standard error are estimated from the relative risk (1.16) and 95% confidence
interval (1.07-1.26) associated with a 10—ug/m3 increase in PM, s.

Functional Form: Log-linear

Coefficient: 0.01484

Standard Error: 0.00417

Incidence Rate: county-specific annual all-cause mortality rate per person ages 30 and older
Population: population of ages 25 and older.

Mortality, All Cause (Pope et al., 2002)

The Pope et al. (2002) analysis is a longitudinal cohort tracking study that uses the same American
Cancer Society cohort as the original Pope et al. (1995) study, and the Krewski et al. (2000) reanalysis.
Pope et al. (2002) analyzed survival data for the cohort from 1982 through 1998, 9 years longer than the
original Pope study. Pope et al. (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and
reported results for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9
codes: 401-440 and 460-519), and “all other” deaths.”™ Like the earlier studies, Pope et al. (2002) found
that mean PM, s is significantly related to all-cause and cardiopulmonary mortality. In addition, Pope et
al. (2002) found a significant relationship with lung cancer mortality, which was not found in the earlier
studies. None of the three studies found a significant relationship with “all other” deaths.

The coefficient and standard error for PM, 5 using the average of '79-"83 and '99-'00 PM data are
estimated from the relative risk (1.06) and 95% confidence interval (1.02-1.11) associated with a change
in annual mean exposure of 10 pg/m? Pope et al. (2002, Table 2).

Functional Form: Log-linear

Coefficient: 0.005827

Standard Error: 0.002157

Incidence Rate: county-specific annual all-cause mortality rate per person ages 30 and older
Population: population of ages 30 and older.

> All-cause mortality includes accidents, suicides, homicides and legal interventions. The category “all other”
deaths is all-cause mortality less lung cancer and cardiopulmonary deaths.
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Mortality -- All Cause, Cardiopulmonary, Ischemic Heart Disease, and Lung Cancer
(KrewskKi et al., 2009)

Krewski et al. (2009) analysis is a longitudinal cohort tracking study that uses an updated version of the
same American Cancer Society cohort as the original Pope et al. (1995) study, and the Krewski et al.
(2000) reanalysis. Krewski et al. (2009) analyzed survival data for the cohort from 1982 through 2000,
11 years longer than the original Pope study. Krewski et al. (2002) reported significant impacts for all-
cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-
519), and ischemic heart disease (ICD-9 codes: 410-414).

Krewski et al. (2009) present results for two exposure estimates. One based on PM2.5 levels in 1979-
1983 and the other for PM2.5 levels in 1999-2000. The effect estimates below for are based on the
1999-2000 exposure estimate, as the later exposure period has better monitor coverage with
participants from 116 cities versus 58 cities for the earlier exposure period. In addition, to the extent
that the number of deaths is increasing as the cohort ages, then the later exposure period will be more
representative of the majority of the deaths that are occurring.

All-Cause Mortality

The coefficient and standard error for PM; 5 (using the’99-'00 PM data and the Random Effects Cox
Model) are estimated from the relative risk (1.06) and 95% confidence interval (1.04-1.08) associated
with a change in annual mean exposure of 10 pg/m® Krewski et al. (2009, Commentary Table 4).

Functional Form: Log-linear

Coefficient: 0.00583

Standard Error: 0.00096

Incidence Rate: county-specific annual all-cause mortality rate per person ages 30 and older
Population: population of ages 30 and older.

Cardiopulmonary Mortality

The coefficient and standard error for PM, 5 (using the’99-'00 PM data and the Random Effects Cox
Model) are estimated from the relative risk (1.13) and 95% confidence interval (1.10-1.16) associated
with a change in annual mean exposure of 10 pg/m? Krewski et al. (2009, Commentary Table 4).

Functional Form: Log-linear

Coefficient: 0.01222

Standard Error: 0.00135

Incidence Rate: county-specific annual cardiopulmonary mortality rate per person ages 30 and older
Population: population of ages 30 and older.

Ischemic Heart Disease Mortality

The coefficient and standard error for PM, 5 (using the’99-"00 PM data and the Random Effects Cox
Model) are estimated from the relative risk (1.24) and 95% confidence interval (1.19-1.29) associated
with a change in annual mean exposure of 10 pg/m?* Krewski et al. (2009, Commentary Table 4).

Functional Form: Log-linear
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Coefficient: 0.02151

Standard Error: 0.00206

Incidence Rate: county-specific annual ischemic heart disease mortality rate per person ages 30 and
older

Population: population of ages 30 and older.

Lung Cancer Mortality

The coefficient and standard error for PM, 5 (using the’99-'00 PM data and the Random Effects Cox
Model) are estimated from the relative risk (1.14) and 95% confidence interval (1.06-1.23) associated
with a change in annual mean exposure of 10 pg/m? Krewski et al. (2009, Commentary Table 4).

Functional Form: Log-linear

Coefficient: 0.01310

Standard Error: 0.00379

Incidence Rate: county-specific annual lung cancer mortality rate per person ages 30 and older
Population: population of ages 30 and older.

Infant Mortality (Woodruff et al., 1997)

Woodruff et al. (1997) examined the relationship between post-neonatal all-cause mortality and
exposure to PM, s in infants born In a study of four million infants in 86 U.S. metropolitan areas
conducted from1989 to 1991. Woodruff et al. (1997) found a significant link between PMy, exposure in
the first two months of an infant’s life with the probability of dying between the ages of 28 days and 364
days. PM10 exposure was significant for all-cause mortality. PM10 was also significant for respiratory
mortality in average birth-weight infants, but not low birth-weight infants.

The coefficient and standard error are based on the odds ratio (1.04) and the 95% confidence interval
(1.02-1.07) associated with a 10 pg/m3 change in PM4, (Woodruff et al., 1997, Table 3).

Functional Form: Logistic

Coefficient: 0.003922

Standard Error: 0.001221

Incidence Rate: county-specific annual post-neonatal’® infant deaths per infant under the age of one
Population: population of infants under one year old.

Heart Attacks (Acute Myocardial Infarction), Nonfatal (Peters et al., 2001)

Peters et al. (2001) studied the relationship between increased particulate air pollution and onset of
heart attacks in the Boston area from 1995 to 1996. The authors used air quality data for PMy, PMyg., s,
PM, s, “black carbon”, O3, CO, NO,, and SO, in a case-crossover analysis. For each subject, the case
period was matched to three control periods, each 24 hours apart. In univariate analyses, the authors
observed a positive association between heart attack occurrence and PM, 5 levels hours before and days
before onset. The authors estimated multivariate conditional logistic models including two-hour and

'8 post-neonatal refers to infants that are 28 days to 364 days old.
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twenty-four hour pollutant concentrations for each pollutant. They found significant and independent
associations between heart attack occurrence and both two-hour and twenty-four hour PM, 5
concentrations before onset. Significant associations were observed for PM,y as well. None of the other
particle measures or gaseous pollutants was significantly associated with acute myocardial infarction for
the two hour or twenty-four hour period before onset.

The mean age of participants was 62 years old, with 21% of the study population under the age of 50. In
order to capture the full magnitude of heart attack occurrence potentially associated with air pollution
and because age was not listed as an inclusion criteria for sample selection, this analysis assumes an age
range of 18 and over in the C-R function. According to the National Hospital Discharge Survey, there
were no hospitalizations for heart attacks among children <15 years of age in 1999 and only 5.5% of all
hospitalizations occurred in 15-44 year olds (Popovic, 2001, Table 10).

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% Cl 1.13-2.34) for a 20
ug/m? increase in twenty-four hour average PM, < (Peters et al., 2001, Table 4, p. 2813).

Functional Form: Logistic

Coefficient: 0.024121

Standard Error: 0.009285

Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-specific
daily heart attack hospitalization rate (ICD code 410)

Population: population of ages 18 and older.

Heart Attacks (Acute Myocardial Infarction), Nonfatal (Pope et al., 2006)

Pope et al. (2006) evaluated the association between short-term exposure to PM, 5 and acute ischemic
heart disease events, including acute nonfatal myocardial infarction, all acute coronary events, and
subsequent myocardial infarctions in individuals living in greater Salt Lake City, Utah. In a case-
crossover study, these ischemic events were assessed in relation to a 10 ug/m3 increase in PM, s.

The coefficient and standard error are calculated from a 4.81% increase in index myocardial infarction
and unstable angina (95% Cl 0.98%-8.79%) for a 10 ug/m? increase in twenty-four hour average PM, s
(Pope et al., 2006, Table 3).

Functional Form: Logistic

Coefficient: 0.00481

Standard Error: 0.00199

Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-specific
daily heart attack hospitalization rate (ICD code 410)

Population: population of ages 18 and older.”’

Y The study included people of all ages. To be comparable with the age groups used with Peters et al (2001) and
because the rate of heart attack in the age group 0-17 is very low, effects were calculated for ages 18 and older.
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Heart Attacks (Acute Myocardial Infarction), Nonfatal (Sullivan et al., 2005)

Sullivan et al. (2005) studied the relationship between onset time of acute myocardial infarction and the
preceding hourly PM, s concentrations in 5,793 confirmed cased of myocardial infarction through King
County, Washington. In this case-crossover study from 1988-1994, air pollution exposure levels
averaged 1 hour, 2 hours, 4 hours, and 24 hours before onset of myocardial infarction were compared
to a set of time-stratified referent exposures from the same day of the week in the month of the case
event. The authors reported a relatively weak association between myocardial infarction onset and
exposure to PM,s.

The coefficient and standard error are calculated from an odds ratio of 1.02 (95% Cl 0.98-1.07) for a 10
ug/m? increase in twenty-four hour average PM, s (Sullivan et al., 2005, Table 3).

Functional Form: Logistic

Coefficient: 0.00198

Standard Error: 0.00224

Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-specific
daily heart attack hospitalization rate (ICD code 410)

Population: population of ages 18 and older. '

Heart Attacks (Acute Myocardial Infarction), Nonfatal (Zanobetti et al., 2009)

Zanobetti et al. (2009) examined the relationship between daily PM, 5 levels and emergency hospital
admissions for cardiovascular causes, myocardial infarction, congestive heart failure, respiratory disease
and diabetes among people ages 65 and older in 26 U.S. communities from 2000-2003. The authors
used meta-regression to examine how this association was modified by season- and community-specific
PM, s composition while controlling for seasonal temperature as a substitute for ventilation. The
authors found that PM, s mass higher in a variety of elements, including arsenic and organic carbon,
significantly increased its effects on hospital admissions.

The coefficient and standard error are calculated from a 2.25% increase in hospital admissions for
myocardial infarction (95% Cl 1.10%-3.42%) for a 10 pug/m? increase in two-day averaged PM, s
(Zanobetti et al., 2009, Table 3).

Functional Form: Log-linear

Coefficient: 0.00225

Standard Error: 0.00059

Incidence Rate: region-specific daily nonfatal heart attack rate per person 65+ = 93% of region-specific
daily heart attack hospitalization rate (ICD code 410)

Population: population of ages 65 and older.

'8 The study included people of all ages. To be comparable with the age groups used with Peters et al (2001) and
because the rate of heart attack in the age group 0-17 is very low, effects were calculated for ages 18 and older.
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Heart Attacks (Acute Myocardial Infarction), Nonfatal (Zanobetti and Schwartz,
2006)

Zanobetti and Schwartz (2006) analyzed hospital admissions through emergency department for
myocardial infarction (ICD-9 code 410) and pneumonia (ICD-9 codes 480-487) for associations with fine
particulate air pollution, ozone, black carbon, nitrogen dioxide (NO,), PM not from traffic, and CO in the
greater Boston area from 1995-1999. The authors used a case-crossover analysis with control days
matched on temperature. Significant associations were detected for NO,, PM, s, and black carbon in
emergency myocardial infarction hospitalizations. Significant associations were also identified for PM, 5
in pneumonia hospitalizations.

The coefficient and standard error are calculated from a 8.65% increase in hospital admissions for
myocardial infarction (95% Cl 1.22%-15.38%) for a 16.32 pg/m? increase in daily PM, s (Zanobetti and
Schwartz, 2006, Table 4).

Functional Form: Log-linear

Coefficient: 0.00530

Standard Error: 0.00221

Incidence Rate: region-specific daily nonfatal heart attack rate per person 65+ = 93% of region-specific
daily heart attack hospitalization rate (ICD code 410)

Population: population of ages 65 and older.

Pooling Estimates of Heart Attacks (Acute Myocardial Infarction), Nonfatal

As the valuation of a nonfatal heart varies by age, he heart attack results were calculated for five age
groups: 18-24, 25-4, 45-54, 55-64, and 65+. For the first four age groups, the studies by Pope et al.
(2006) and Sullivan et al. (2005) were combined with a random/fixed effects approach for each age
group. For the 65 and older age group, the Zanobetti et al. (2009) and Zanobetti and Schwartz (2006)
studies, which are based on just the elderly population, were included in the random/fixed effects
pooling. Once each of the age groups were pooled separately, they were added together to get an
overall estimate of nonfatal heart attacks.
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Hospital Admissions for All Cardiovascular Causes (less AMI) (Bell et al., 2008)

Bell et al. (2008) evaluated the association between short-term exposure to PM, 5 and the risk of
cardiovascular (ICD-9 codes 410-414, 26-427, 428, 429, 430-438, and 440-449) and respiratory (ICD-9
codes 464-466, 480-487, and 490-492) hospital admissions. The target population was Medicare
enrollees 265 years old in 202 U.S. counties with populations greater than 200,000 from 1999-2005.
Three time-series models were used to provide three key variables: consistent PM effects across the
year, different PM effects by season, and smoothly varying PM effects throughout the year. A two-stage
Bayesian hierarchical model was used to estimate the association between PM, s and hospitalization
rates, with the first stage estimating the association within a single county and the second stage
combining county-specific estimates.

The coefficient and standard error are calculated from a 0.80% increase in hospital admissions for
cardiovascular-related problems (95% CI 0.59%-1.01%) for a 10 pg/m?® increase in daily PM, s (Bell et al.,
2008, Table 1).

Functional Form: Log-linear

Coefficient: 0.00080

Standard Error: 0.00011

Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions (less acute
myocardial infarction) per person ages 65 and older (ICD codes 390-409, 411-429)

Population: population of ages 65 and older.

Hospital Admissions for All Cardiovascular Causes (less AMI) (Peng et al., 2008)

Peng et al. (2008) examined the risk of hospital admissions for cardiovascular and respiratory diseases in
relation to particulate matter (PM1g.,5 and PM,;). To accomplish this, the authors utilized a database of
108 U.S. counties with daily emergency hospital admission rates for cardiovascular and respiratory
diseases among Medicare enrollees living 9 miles from air monitors, temperature, and dew-point
temperature. PM,q, 5 and PM, s concentrations were calculated by using monitoring data from January
1, 1999 through December 31, 2005. Overall, there were 3.7 million cardiovascular disease and 1.4
million respiratory disease-related hospital admissions for the time period assessed.

The coefficient and standard error are calculated from a 0.71% increase in hospital admissions for
cardiovascular-related problems (95% Cl 0.45%-0.96%) for a 10 ug/m? increase in daily PM, s (Peng et al.,
2008, p. 2175).

Functional Form: Log-linear

Coefficient: 0.00071

Standard Error: 0.00013

Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions (less acute
myocardial infarction) per person ages 65 and older (ICD codes 390-409, 411-429)

Population: population of ages 65 and older.
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Hospital Admissions for All Cardiovascular Causes (less AMI) (Peng et al., 2009)

Peng et al. (2009) investigated the relationship between hospital admissions for cardiovascular and
respiratory disease and the chemical components of PM, 5 across 119 U.S. urban communities for 12
million Medicare enrollees using log-linear Poisson regression models. This was achieved using a
national database with daily data from 2000-2006 on emergency hospital admissions of cardiovascular
and respiratory outcomes, ambient levels of PM, s components and weather variables. Bayesian
hierarchical statistical models were used to estimate the associations.

The coefficient and standard error are calculated from a 0.68% increase in hospital admissions for
cardiovascular-related problems (95% CI 0.26%-1.10%) for a 10 pg/m?® increase in daily PM, s (Peng et al.,
2009, p. 960).

Functional Form: Log-linear

Coefficient: 0.00068

Standard Error: 0.00021

Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions (less acute
myocardial infarction) per person ages 65 and older (ICD codes 390-409, 411-429)

Population: population of ages 65 and older.

Hospital Admissions for All Cardiovascular Causes (less AMI) (Zanobetti et al., 2009)

Zanobetti et al. (2009) examined the relationship between daily PM, 5 levels and emergency hospital
admissions for cardiovascular causes, myocardial infarction, congestive heart failure, respiratory disease
and diabetes among people ages 65 and older in 26 U.S. communities from 2000-2003. The authors
used meta-regression to examine how this association was modified by season- and community-specific
PM, s composition while controlling for seasonal temperature as a substitute for ventilation. The
authors found that PM, s mass higher in a variety of elements, including arsenic and organic carbon,
significantly increased its effects on hospital admissions.

The coefficient and standard error are calculated from a 1.89% increase in hospital admissions for
myocardial infarction (95% Cl 1.34%-2.45%) for a 10 pug/m? increase in two-day averaged PM, s
(Zanobetti et al., 2009, Table 3).

Functional Form: Log-linear

Coefficient: 0.00189

Standard Error: 0.00028

Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions (less acute
myocardial infarction) per person ages 65 and older (ICD codes 390-409, 411-429)

Population: population of ages 65 and older.
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Hospital Admissions for All Cardiovascular Causes (less AMI) (Moolgavkar, 2000b)

Moolgavkar (2000b) examined the association between air pollution and cardiovascular hospital
admissions (ICD 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas. He collected
daily air pollution data for ozone, SO,, NO,, CO, and PMy, in all three areas. PM, s data was available
only in Los Angeles. The data were analyzed using a Poisson regression model with generalized additive
models to adjust for temporal trends. Separate models were run for 0 to 5 day lags in each location.
Among the 65+ age group, the gaseous pollutants generally exhibited stronger effects than PM,q or
PM,s. The strongest overall effects were observed for SO, and CO. In a single pollutant model, PM, 5
was statistically significant for lag 0 and lag 1. In co-pollutant models with CO, the PM, 5 effect dropped
out and CO remained significant. For ages 20-64, SO, and CO exhibited the strongest effect and any
PM, s effect dropped out in co-pollutant models with CO.

In response to concerns with the Splus issue, Moolgavkar (2003) reanalyzed his earlier study. In the
reanalysis, he reported that more generalized additive models with stringent convergence criteria and
generalized linear models resulted in smaller relative risk estimates. Not all of the original results were
replicated, however, so this analysis uses a result from the original study.

The single pollutant coefficient and standard error are calculated from an estimated percent change of
1.4 and t-statistic of 4.1 for a 10 ug/m? increase in PM, s in the zero lag model (Moolgavkar, 2000b, Table
4).

Functional Form: Log-linear

Coefficient: 0.00140

Standard Error: 0.00034

Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions per person
ages 18 to 64 (ICD codes 390-409, 411-429)

Population: population of ages 18 to 64.%

Pooling Estimates of Hospital Admissions for All Cardiovascular Causes (less AMI)

The all-cardiovascular hospital admission studies for ages 65 and older are themselves large, multi-city
cities. Because the authors themselves report a pooled estimate, it would not be appropriate to then
used random/fixed effects to pool their individual estimates. The results from the two studies by Peng
et al. (2008; 2009), which are based on similar databases, were averaged, and then this average was
given an equal weight with the studies by Bell et al. (2008) and Zanobetti et al (2009). The pooled result
from the 65 and older studies was then added to the result for ages 18-64 based on Moolgavkar
(2000b).

1% Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other
studies, we apply the results to the population of ages 18 to 64.
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Hospital Admissions for All Respiratory Causes (Zanobetti et al., 2009)

Zanobetti et al (2009) examined the relationship between daily PM, s levels and emergency hospital
admissions for cardiovascular causes, myocardial infarction, congestive heart failure, respiratory disease
and diabetes among people ages 65 and older in 26 U.S. communities from 2000-2003. The authors
used meta-regression to examine how this association was modified by season- and community-specific
PM, s composition while controlling for seasonal temperature as a substitute for ventilation. The
authors found that PM, s mass higher in a variety of elements, including arsenic and organic carbon,
significantly increased its effects on hospital admissions.

The coefficient and standard error are calculated from a 2.07% increase in hospital admissions for
myocardial infarction (95% Cl 1.20%-2.95%) for a 10 pug/m? increase in two-day averaged PM, s
(Zanobetti et al., 2009, Table 3).

Functional Form: Log-linear

Coefficient: 0.00207

Standard Error: 0.00045

Incidence Rate: region-specific daily hospital admission rate for all respiratory admissions per person 65
and older (ICD codes 460-519)

Population: population of ages 65 and older.

Hospital Admissions for Chronic Lung Disease (Moolgavkar, 2000a)

Moolgavkar (2000a) examined the association between air pollution and COPD hospital admissions (ICD
490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. He collected daily air pollution
data for ozone, SO,, NO,, CO, and PMyq in all three areas. PM, s data was available only in Los Angeles.
The data were analyzed using a Poisson regression model with generalized additive models to adjust for
temporal trends. Separate models were run for 0 to 5 day lags in each location. Among the 65+ age
group in Chicago and Phoenix, weak associations were observed between the gaseous pollutants and
admissions. No consistent associations were observed for PMy,. In Los Angeles, marginally significant
associations were observed for PM, s, which were generally lower than for the gases. In co-pollutant
models with CO, the PM, 5 effect was reduced. Similar results were observed in the 0-19 and 20-64 year
old age groups.

In response to concerns with the Splus issue, Moolgavkar (2003) reanalyzed his earlier study. In the
reanalysis, he reported that more generalized additive models with stringent convergence criteria and
generalized linear models resulted in smaller relative risk estimates. Not all of the original results were
replicated, however, so this analysis uses a result from the original study. The PM, 5 C-R functions for
the 20-64 age group are based on the original study’s single-pollutant model. Since the true PM effect is
most likely best represented by a distributed lag model, then any single lag model should underestimate
the total PM effect. As a result, the lag models with the greatest effect estimates were selected for use
in the C-R functions.
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The single pollutant coefficient and standard error are calculated from an estimated percent change of
2.2 and t-statistic of 3.0 for a 10 ug/m3 increase in PM, ;5 in the two-day lag model (Moolgavkar, 20003,
Table 4).

Functional Form: Log-linear

Coefficient: 0.0022

Standard Error: 0.000733

Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per
person 18-64 (ICD codes 490-492, 494-496)*

Population: population of ages 18 to 64.%

Hospital Admissions for Asthma (Sheppard et al., 1999; 2003; Babin et al., 2007)

Babin et al. (2007) examined pediatric asthma-related emergency room (ER) visits and hospital
admissions (ICD-9 code 493) in Washington, D.C. from 2001-2004 and their short-term associations with
ozone, particulate matter, socioeconomic status, and age group. Applying Poisson regression analyses,
the authors found significant associations between asthma ER visits and outdoor ozone concentrations
for the 5-12 year old age group. A weak association was found between PM, s and asthma
hospitalization.

The coefficient and standard error are calculated from a 0.2% increase in hospital admissions for
myocardial infarction (95% CI -0.6%-1.1%) for a 1 ug/m? increase in daily PM, s (Babin et al., 2007, Table
2).

Functional Form: Log-linear

Coefficient: 0.00200

Standard Error: 0.00434

Incidence Rate: region-specific daily hospital admission rate for asthma admissions per person ages 0 to
17 (ICD code 493)

Population: population of ages 0 to 17.

Hospital Admissions for Asthma (Sheppard et al., 1999; 2003)

Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly (ages <65)
hospital admissions for asthma from 1987 to 1994. They used air quality data for PM;, PM, s, coarse
PM10,4.,5, SO,, ozone, and CO in a Poisson regression model with control for time trends, seasonal
variations, and temperature-related weather effects. They found asthma hospital admissions associated
with PMyg, PM; 5, PM1q,5, CO, and ozone. They did not observe an association for SO,. They found PM
and CO to be jointly associated with asthma admissions. The best fitting co-pollutant models were

20 Moolgavkar (2000a) reports results for ICD codes 490-496. In order to avoid double counting non-elderly
asthma hospitalizations (ICD code 493), this analysis excludes ICD code 493 from the baseline incidence rate used
in this function.
?! Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other
studies, we apply the results to the population of ages 18 to 64.

42



found using ozone. However, ozone data was only available April through October, so they did not
consider ozone further. For the remaining pollutants, the best fitting models included PM, 5 and CO.
Results for other co-pollutant models were not reported.

In response to concerns that the work by Sheppard et al. (1999) may be biased because of the Splus
issue, Sheppard (2003) reanalyzed some of this work, in particular Sheppard reanalyzed the original
study’s PM, s single pollutant model.

The coefficient and standard error are based on the relative risk (1.04) and 95% confidence interval
(1.01-1.06) for a 11.8 pg/m’ increase in PM, s in the 1-day lag GAM stringent model (Sheppard, 2003, pp.
228-299).

Functional Form: Log-linear

Coefficient: 0.003324

Standard Error: 0.001045

Incidence Rate: region-specific daily hospital admission rate for asthma admissions per person ages 0 to
17 (ICD code 493)

Population: population of ages 0 to 17.

Pooling Estimates of Hospital Admissions for Asthma

The estimates generated from the Babin et al. (2007) and Sheppard et al. (2003) studies were pooled
using a random/fixed effects approach to get a single estimate of hospital admissions due to asthma.

Emergency Room Visits for Asthma (Mar et al., 2010)

Mar et al. (2010) assessed the effect of particulate matter air pollution, including emissions from diesel
generators, on emergency room visits for asthma in the greater Tacoma, Washington area from January
3, 1998 to May 30, 2002 using Poisson regression models. Health data were collected for individuals of
all ages from six Tacoma hospitals. Overall, the researchers found an association between daily PM, 5
levels and emergency room visits for asthma at lag days 2 and 3, with a relative risk for lag day 2 of 1.04
(95% Cl: 1.01-1.07) and a relative risk for lag day 3 of 1.03 (95% Cl: 1.0-1.06). No significant association
between emergency room visits for asthma and increased use of the diesel generators was observed.

The coefficient and standard error are calculated from a relative risk of 1.04 (95% ClI 1.01-1.07) fora 7
;.lg/m3 increase in PM, s (Mar et al., 2010, Table 5).

Functional Form: Log-linear

Coefficient: 0.00560

Standard Error: 0.00210

Incidence Rate: region-specific daily emergency room rate for asthma admissions per person ages 0 to
17 (ICD code 493)

Population: population of ages 0 to 17.
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Emergency Room Visits for Asthma (Slaughter et al., 2005)

Slaughter et al. (2005) examined the short-term association of particulate matter (PMy, PM, 5, PMy,, and
PM10.25) and carbon monoxide with hospital admissions and emergency room visits for respiratory and
cardiac outcomes and mortality in Spokane, Washington from January 1995 to June 2001 using a log-
linear generalized linear model.

The coefficient and standard error are calculated from a relative risk of 1.03 (95% Cl 0.98-1.09) for a 10
ug/m3 increase in PM, s (Slaughter et al., 2005, Table 4).

Functional Form: Log-linear

Coefficient: 0.00296

Standard Error: 0.00271

Incidence Rate: region-specific daily emergency room rate for asthma admissions per person ages 0 to
17 (ICD code 493)

Population: population of ages 0 to 17.

Pooling Estimates of Emergency Room Visits for Asthma

The estimates generated from the Mar et al. (2010) and Slaughter et al. (2005) studies were pooled
using a random/fixed effects approach to get a single estimate of emergency room visits due to asthma.

Acute Bronchitis (Dockery et al., 1996)

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported rates
of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12
living in 24 communities in U.S. and Canada. Health data were collected in 1988-1991, and single-
pollutant models were used in the analysis to test a number of measures of particulate air pollution.
Dockery et al. found that annual level of sulfates and particle acidity were significantly related to
bronchitis, and PM, ; and PM,, were marginally significantly related to bronchitis.? They also found
nitrates were linked to asthma, and sulfates linked to chronic phlegm. It is important to note that the
study examined annual pollution exposures, and the authors did not rule out that acute (daily)
exposures could be related to asthma attacks and other acute episodes.

Bronchitis was counted in the study only if there were “reports of symptoms in the past 12
months”(Dockery et al., 1996, p. 501). It is unclear, however, if the cases of bronchitis are acute and
temporary, or if the bronchitis is a chronic condition. Dockery et al. found no relationship between PM
and chronic cough and chronic phlegm, which are important indicators of chronic bronchitis. This
analysis assumes that the C-R function based on Dockery et al. is measuring acute bronchitis.

The estimated logistic coefficient and standard error are based on the odds ratio (1.50) and 95%
confidence interval (0.91-2.47) associated with being in the most polluted city (PM,.; = 20.7 ug/m°)

2 The original study measured PM, ;, however when using the study's results we use PM, . This makes only a
negligible difference, assuming that the adverse effects of PM,, and PM, 5 are comparable.
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versus the least polluted city (PM,; =5.8 ug/ma) (Dockery et al., 1996, Tables 1 and 4). The original
study used PM, ;, however, this analysis uses the PM, ; coefficient and applies it to PM, 5 data.

Functional Form: Logistic

Coefficient: 0.027212

Standard Error: 0.017096

Incidence Rate: annual bronchitis incidence rate per person = 0.043 (American Lung Association, 2002b,
Table 11)

Population: population of ages 8-12.

Lower Respiratory Symptoms (Schwartz and Neas, 2000)

Schwartz and Neas (2000) used logistic regression to link lower respiratory symptoms and cough in
children with coarse PMyo, PM, 5, sulfate and H* (hydrogen ion). Children were selected for the study if
they were exposed to indoor sources of air pollution: gas stoves and parental smoking. The study
enrolled 1,844 children into a year-long study that was conducted in different years (1984 to 1988) in six
cities. The students were in grades two through five at the time of enrollment in 1984. By the
completion of the final study, the cohort would then be in the eighth grade (ages 13-14); this suggests
an age range of 7 to 14.

The coefficient and standard error are calculated from the reported odds ratio (1.33) and 95%
confidence interval (1.11-1.58) associated with a 15 ug/m3 change in PM, 5 (Schwartz and Neas, 2000,
Table 2).

Functional Form: Logistic

Coefficient: 0.01901

Standard Error: 0.006005

Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 (Schwartz et al.,
1994, Table 2).

Population: population of ages 7 to 14.

Upper Respiratory Symptoms (Pope, 1991)

Using logistic regression, Pope et al. (1991)estimated the impact of PM;o on the incidence of a variety of
minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah Valley
from December 1989 through March 1990. The children in the Pope et al. study were asked to record
respiratory symptoms in a daily diary. With this information, the daily occurrences of upper respiratory
symptoms (URS) and lower respiratory symptoms (LRS) were related to daily PM,, concentrations. Pope
et al. describe URS as consisting of one or more of the following symptoms: runny or stuffy nose; wet
cough; and burning, aching, or red eyes. Levels of ozone, NO,, and SO, were reported low during this
period, and were not included in the analysis. The sample in this study is relatively small and is most
representative of the asthmatic population, rather than the general population. The school-based
subjects (ranging in age from 9 to 11) were chosen based on “a positive response to one or more of
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three questions: ever wheezed without a cold, wheezed for 3 days or more out of the week for a month
or longer, and/or had a doctor say the ‘child has asthma’(Pope, 1991, p. 669).” The patient-based
subjects (ranging in age from 8 to 72) were receiving treatment for asthma and were referred by local
physicians. Regression results for the school-based sample (Pope, 1991, Table 5) show PMj, significantly
associated with both upper and lower respiratory symptoms. The patient-based sample did not find a
significant PM,g effect. The results from the school-based sample are used here.

The coefficient and standard error for a one ug/m?® change in PMy is reported in Table 5.

Functional Form: Logistic

Coefficient: 0.0036

Standard Error: 0.0015

Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 (Pope, 1991, Table
2)

Population: asthmatic population ages 9 to 11 = 5.67%”* of population ages 9 to 11.

Asthma Exacerbation: Cough, Wheeze, and Shortness of Breath (Ostro et al., 2001)

Ostro et al. (2001)studied the relation between air pollution in Los Angeles and asthma exacerbation in
African-American children (8 to 13 years old) from August to November 1993. They used air quality data
for PMy,, PM, 5, NO,, and Os in a logistic regression model with control for age, income, time trends, and
temperature-related weather effects.”* Asthma symptom endpoints were defined in two ways:
“probability of a day with symptoms” and “onset of symptom episodes”. New onset of a symptom
episode was defined as a day with symptoms followed by a symptom-free day. The authors found
cough prevalence associated with PM,, and PM, 5 and cough incidence associated with PM, 5, PMy,, and
NO,. Ozone was not significantly associated with cough among asthmatics.

Note that the study focused on African-American children ages 8 to 13 years old. However, it is
assumed that the results from this study are applicable to the general population ages 6 to 18 years old.

Asthma Exacerbation, Cough

The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.98-1.07) for a 30 pg/m>
increase in 12-hour average PM, 5 concentration (Ostro et al., 2001, Table 4, p. 204).

Functional Form: Logistic

Coefficient: 0.000985

Standard Error: 0.000747

Incidence Rate: daily cough rate per person (Ostro et al., 2001, p. 202) =0.145

?* The American Lung Association (2002a, Table 7) estimates asthma prevalence for children ages 5to 17 at 5.67%
(based on data from the 1999 National Health Interview Survey).

! The authors note that there were 26 days in which PM, 5 concentrations were reported higher than PM,q
concentrations. The majority of results the authors reported were based on the full dataset. These results were
used for the basis for the C-R functions.
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Population: asthmatic population ages 6 to 18 = 10.7%>

Asthma Exacerbation, Shortness of Breath

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.00-1.17) for a 30 pg/m>
increase in 12-hour average PM, s concentration (Ostro et al., 2001, Table 4, p. 204).

Functional Form: Logistic

Coefficient: 0.002565

Standard Error: 0.001335

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p. 202) = 0.074
Population: asthmatic population ages 6 to 18 = 10.7%

Asthma Exacerbation, Wheeze

The coefficient and standard error are based on an odds ratio of 1.06 (95% CI 1.01-1.11) for a 30 pg/m*
increase in 12-hour average PM, 5 concentration (Ostro et al., 2001, Table 4, p. 204).

Functional Form: Logistic

Coefficient: 0.001942

Standard Error: 0.000803

Incidence Rate: daily wheeze rate per person (Ostro et al., 2001, p. 202) =0.173
Population: asthmatic population ages 6 to 18 = 10.7%

Asthma Exacerbation: Cough and Shortness of Breath (Vedal et al., 1998; Mar et al.,
2004)

Mar et al. (2004) studied the effects of various size fractions of particulate matter on respiratory
symptoms of adults and children with asthma, monitored over many months. The study was conducted
in Spokane, Washington, a semiarid city with diverse sources of particulate matter. Data on respiratory
symptoms and medication use were recorded daily by the study’s subjects, while air pollution data was
collected by the local air agency and Washington State University. Subjects in the study consisted of 16
adults—the majority of whom participated for over a year—and nine children, all of whom were studied
for over eight months. Among the children, the authors found a strong association between cough
symptoms and several metrics of particulate matter, including PM, 5. However, the authors found no
association between respiratory symptoms and PM of any metric in adults.

Asthma Exacerbation, Cough
The coefficient and standard error are based on an odds ratio of 1.21 (95% Cl 1.99-1.47) for a 10 pg/m>

increase in daily average PM, s concentration (Mar et al., 2004, Table 7).

Functional Form: Logistic
Coefficient: 0.01906

%> The American Lung Association (2010, Table 7) estimates asthma prevalence for children 5-17 at 10.7% in 2008.
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Standard Error: 0.00983
Incidence Rate: daily cough rate per person (Ostro et al., 2001, p. 202) =0.145
Population: asthmatic population ages 6 to 18 = 10.7%°°

Asthma Exacerbation, Shortness of Breath

The coefficient and standard error are based on an odds ratio of 1.13 (95% Cl 0.86-1.48) for a 10 pg/m*
increase in daily average PM, s concentration (Mar et al., 2004, Table 7).

Functional Form: Logistic

Coefficient: 0.01222

Standard Error: 0.01385

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p. 202) = 0.074
Population: asthmatic population ages 6 to 18 = 10.7%

Pooling Estimates of Asthma Exacerbation

The following approach was used to combine the estimates generated using effect estimates from the
Ostro et al. (2001) and Mar et al. (2004) studies to produce a single asthma exacerbation incidence
estimate. First, the separate incidence estimates from the Ostro et al. (2001) study for cough, shortness
of breath, and wheeze and from the Mar et al. (2004) study for cough and shortness of breath were
generated. The two estimates for cough were pooled using a random/fixed effects approach, and the
two estimates for shortness of breath were pooled. The pooled estimates for cough and shortness of
were then averaged with wheeze estimate, because each of these endpoints is aimed at capturing the
same overall endpoint (asthma exacerbations) and there could be overlap in their predictions.

To prevent double-counting, this analysis focused the estimation on asthma exacerbations occurring in
children and excluded adults from the calculation. Asthma exacerbations occurring in adults are
assumed to be captured in the general population endpoints such as work loss days and MRADs.
Consequently, if adult-specific asthma exacerbation estimate had been included, this would likely have
double-counted incidence for this endpoint. However, because the general population endpoints do not
cover children (with regard to asthmatic effects), an analysis focused specifically on asthma
exacerbations for children (6 to 18 years of age) could be conducted without concern for double-
counting.

Work Loss Days (Ostro, 1987)

Ostro (1987) estimated the impact of PM, 5 on the incidence of work-loss days (WLDs), restricted activity
days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working population,
ages 18 to 65, living in metropolitan areas. The annual national survey results used in this analysis were
conducted in 1976-1981. Ostro reported that two-week average PM, s levels were significantly linked to
work-loss days, restricted activity days (RADs), and respiratory-related restricted activity days (RRADs),

*® The American Lung Association (2010, Table 7) estimates asthma prevalence for children 5-17 at 10.7% in 2008.
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however there was some year-to-year variability in the results.”” Separate coefficients were developed
for each year in the analysis (1976-1981); these coefficients were pooled. The coefficient used in the
concentration-response function presented here is a weighted average of the coefficients in Ostro
(1987, Table 3) using the inverse of the variance as the weight.

The coefficient used in the C-R function is a weighted average of the coefficients in Ostro (1987, Table 3)
using the inverse of the variance as the weight. The standard error of the coefficient is calculated as
follows, assuming that the estimated year-specific coefficients are independent.

Functional Form: Log-linear

Coefficient: 0.0046

Standard Error: 0.00036

Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 (U.S. Bureau of
the Census, 1997, No. 22; Adams et al., 1999, Table 41)

Population: adult population ages 18 to 64.

Minor Restricted Activity Days (Ostro, 1989)

Ostro and Rothschild (1989) estimated the impact of PM, 5 and ozone on the incidence of minor
restricted activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national
sample of the adult working population, ages 18 to 65, living in metropolitan areas. The annual national
survey results used in this analysis were conducted in 1976-1981. Controlling for PM, 5, two-week
average ozone has highly variable association with RRADs and MRADs. Controlling for ozone, two-week
average PM, s was significantly linked to both health endpoints in most years.?® The C-R function for PM
is based on this co-pollutant model.

Using the results of the two-pollutant model, separate coefficients were developed for each year in the
analysis, which were then combined for use in this analysis. The coefficient is a weighted average of the
coefficients in Ostro and Rothschild (1989, Table 4) using the inverse of the variance as the weight. The
standard error of the coefficient is calculated as follows, assuming that the estimated year-specific
coefficients are independent.

Functional Form: Log-linear

Coefficient: 0.00741

Standard Error: 0.00070

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 (Ostro and
Rothschild, 1989, p. 243)

7 The study used a two-week average pollution concentration; the C-R function uses a daily average, which is
assumed to be a reasonable approximation.
% The study is based on a “convenience” sample of non-elderly individuals. Applying the C-R function to this age
group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible to PM as individuals
under 65.
*® The study used a two-week average pollution concentration; the C-R function uses a daily average, which is
assumed to be a reasonable approximation.
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Population: adult population ages 18 to 64.*

* The study is based on a “convenience” sample of non-elderly individuals. Applying the C-R function to this age
group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible to PM as individuals
under 65.
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Appendix B. Health Incidence Data

Health impact functions developed from log-linear or logistic models estimate the percent change in an
adverse health effect associated with a given pollutant change. In order to estimate the absolute
change in incidence using these functions, this analysis needed the baseline incidence rate of the
adverse health effect, or the number of cases experienced by a given population per unit of time. And in
the case of asthma, a prevalence rate, or percentage of the population affected (in this case asthmatic),
was needed as well. This appendix describes the data used to estimate baseline incidence and
prevalence rates for the health effects considered in this analysis.

The incidence data used in this analysis are available in version 4.0 of BenMAP and are described in
Appendix E of the BenMAP User Manual.?' The description below for mortality, hospitalization,
emergency room visits, and heart attacks is drawn from the BenMAP User Manual. Details on incidence
and prevalence rates for other health impacts are described in the Appendix detailing each health
impact function.

Mortality Incidence Rate

The mortality data used in this analysis is a forecasted estimate for 2010 that comes with the BenMAP
software. It would have been preferred to have a 2008 mortality estimate, as this is the midpoint of our
ambient PM, s data range of 2007-2009, but this was not available. Since mortality rates have gradually
declined over time, using a 2010 rate rather than 2008 is a conservative approach, tending to slightly
under-estimate the mortality rate.

The 2010 mortality rate estimates are ultimately based on individual-level mortality data from2004-
2006 for the whole United States were obtained from the Centers for Disease Control (CDC), National
Center for Health Statistics (NCHS). Since the detailed mortality data obtained from the CDC do not
include population, these data were combined with U.S. Census Bureau post-censal population
estimates exported from BenMAP. Age-, cause-, and county-specific mortality rates were then
generated.

To estimate age- and county-specific mortality rates in years 2010, the developers of BenMAP calculated
adjustment factors, based on a series of Census Bureau projected national mortality rates (for all-cause
mortality), to adjust the age- and county-specific mortality rates calculated using 2004-2006 data.
Details of these calculations are described in Appendix E of the BenMAP User Manual (Abt Associates
Inc., 2010).

*! The BenMAP software and its user manual are available from the BenMAP website:
http://www.epa.gov/oaqps001/benmap/download.html.
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Hospital Admission Incidence Rate

Hospitalization rates were calculated using data from the Healthcare Cost and Utilization Project (HCUP).
As noted in Appendix E of the BenMAP User Manual, HCUP is a family of health care databases
developed through a Federal-State-Industry partnership and sponsored by the Agency for Healthcare
Research and Quality. HCUP products include the State Inpatient Databases, the State Emergency
Department Databases, the Nationwide Inpatient Sample, and the Nationwide Emergency Department
Sample. HCUP databases can be obtained from the following data services:

HCUP Central Distributor: Many of the HCUP databases are available for purchase through the HCUP
Central Distributor. The databases include detailed information for individual discharges, such as
primary diagnosis (in ICD-9 codes), patient’s age and residence county.

HCUP State Partners: Some HCUP participating states do not release their data to the Central
Distributor; however, the data may be obtained through contacting the State Partners. Some State
Partners (e.g., CA, TX, and NY) provided discharge-level data; others (e.g., OH) provided summarized
data.

HCUPnet: This is a free, on-line query system based on data from HCUP.

The developers of BenMAP combined the data from these different sources and developed a nominally
county-level database, however, in some cases more aggregated data were used. For some states
neither discharge-level nor state-level data were available. In such cases regional statistics were used
from HCUPnet to estimate hospitalization rates for those states. The data year for most states is 2007;
the exception is MA, for which the data year is 2006.

Non-Fatal Heart Attack Incidence Rate

As in the case of hospital admissions, the emergency room visit incidence rate is based on HCUP data,
and thus comes from a variety of sources. The data year for most states is 2007; the exception is MA,
for which the data year is 2006.

Emergency Room Visit Incidence Rate

As in the case of hospital admissions, the emergency room visit incidence rate is based on HCUP data,
and thus comes from a variety of sources. The data year varies across the states from 2005 to 2007; we
assumed that ER visit rates are reasonably constant across these three years and consider them as 2006
rates.
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Appendix C. Population Data

The population estimate used in this analysis is for 2008, which is the midpoint of the 2007-2009 air
quality monitoring used in the rollback analyses. To develop the 2008 population estimates, the analysis
started with block data from the 2000 Census.** To account for the change in population between 2000
and 2008, the analysis adjusted the U.S. Census Bureau data with population projections based on
economic forecasting models developed by Woods and Poole,* which has the most detailed (county-
level) forecasts available covering the entire nation.

The Woods and Poole database contains county level projections of population by age, sex, race, and
ethnicity. Projections in each county are determined simultaneously with every other county in the U.S.
to take into account patterns of economic growth and migration. The sum of growth in county level
populations is constrained to equal a previously determined national population growth, based on
Bureau of Census estimates.>* According to Woods and Poole, linking county level growth projections
together and constraining to a national level total growth avoids potential errors introduced by
forecasting each county independently.

Woods and Poole developed county projections in a four stage process. First, national level variables
such as income, employment, populations, etc. are forecasted. Second, employment projections are
made for 172 economic areas defined by the Bureau of Economic Analysis, using an "export-base"
approach, which relies on linking industrial sector production of non-locally consumed production items,
such as outputs from mining, agriculture, and manufacturing with the national economy. The export-
base approach requires estimation of demand equations or calculation of historical growth rates for
output and employment by sector. Third, population is projected for each economic area based on net
migration rates derived from employment opportunities, and following a cohort-component method
based on fertility and mortality in each area. Fourth, employment and population projections are
repeated for counties, using the economic region totals as bounds. The age, sex, and race distributions
for each region or county are determined by aging the population by single year of age by sex and race
for each year through 2025 based on historical rates of mortality, fertility, and migration.

The present analysis estimated 2008 grid-cell population by using 2000 Census block-level population
estimates and the percentage change in population estimates based on the county-level Woods & Poole
data. This occurred in a three-step process.

Step 1. Using the PopGrid model, the analysis summed the 2000 block data to the level of the air quality
modeling data (CAMx grid-cell), keeping track of the (one or more) counties that overlap with the grid-
cell. The 2000 block data are the most disaggregated data provided by the Census Bureau, and typically
cover a much smaller geographic area than the air quality models. This summing generated CAMx

32 (Geolytics Inc., 2002)
** (Woods & Poole Economics Inc., 2001)
** (Hollman et al., 2000)

53



population grid-cells with year 2000 population data, as well as the percentage of the total population in
each grid-cell falling within a particular county.

Step 2. The analysis used the Woods and Poole data to estimate the percentage change (from 2000 to
2008) in the population by age, sex, and race. The analysis then calculated a growth adjustment factor
equal to one plus the percentage change (e.g., if the percentage change equals two percent, then the
adjustment factor is 1.02).

Step 3. Finally, the analysis multiplied the appropriate age, sex, and race growth adjustment factor for
each county with the appropriate population in each grid-cell.

For example, when forecasting a single population variable, say, children ages 4 to 9 in the year 2008,
BenMAP calculated:

ages_o, county, 2008

age€s—9, g,2008 = Ag€s—9, g,2000 *
ages—_o, county, 2000

where the g™ population grid-cell is wholly located within a given county.

In the case, where the g™ grid-cell includes more than one county in its boundary, the situation is
somewhat more complicated. BenMAP first estimates the fraction of individuals in a given age group
(e.g., ages 4 to 9) that reside in each county within the gth grid-cell. BenMAP calculates this fraction by
simply dividing the all-age population of a given county within the g™ grid-cell by the total population in
the g™ grid-cell:

ageall, g in county,

fraction of age, ¢ 4i counry, = age

all, g

BenMAP multiplied this fraction with the number of individuals ages 4 to 9 in the year 2000, to give an
estimate of the number of individuals ages 4 to 9 that reside in the fraction of the county within the g™
grid-cell in the year 2000:

age4—9,g in county,, 2000 = age4—9, g,2000 * fractlon age4—9,g in county,

To then forecast the population in 2008, BenMAP scaled the 2000 estimate with the ratio of the county
projection for 2008 to the county projection for 2000:

ages—o, county,, 2008

ages—_o, gin county,, 2008 — Ag€4—9, g,2000 *
ag€4-9, county,, 2000

Combining the contributions from each county within each given grid-cell gave population of persons
ages 4 to 9 in the year 2008.
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Appendix D. Resume of Dr. McCubbin

Dr. Donald McCubbin has over 15 years of experience conducting analyses of environmental issues. He
managed the development of BenMAP, led training programs for state, federal and international clients,
wrote the BenMAP user manual, and generated and maintained extensive databases of population,
health statistics, epidemiological results, and health costs. Dr. McCubbin analyzed the health benefit of
the Clean Air Act, major regulations, such as the Heavy Duty Diesel and Clean Air Interstate rules, and
the impacts of power plants, motor vehicles, and other pollution sources. He has written a number of
peer-reviewed articles and book chapters, as well as many reports on air quality issues and health
impacts. He has given expert witness testimony for the Department of Justice, and he received EPA’s
Level 1 Science and Technological Achievement Award for a peer-reviewed research article on the
health benefits of alternative ozone standards.

Education

Ph.D. Economics, University of California, San Diego

M.S.  Agricultural Economics, University of California, Davis
M.S.  Ecology, University of California, Davis

B.A. Biological Basis of Behavior, University of Pennsylvania

Relevant Professional Experience

Institute of Transportation Studies, University of CA, Davis. Research Analyst. Developing a model of
the climate change impacts associated with transportation fuels. (2009-Present)

Abt Associates Inc. Principal Associate. Designed and managed the development of innovative software
tools to estimate air pollution exposure and the associated health and economic costs. Prepared
numerous reports, including examining the co-control benefits of greenhouse gas emission reductions,
dioxin fate and transport, and the environmental and health impacts of ammonia from livestock
production. Worked on a variety of international projects in Mexico, Dominican Republic, Guatemala,
Belize, Nicaragua, Chile, Bolivia, India, Tanzania, and Ghana. (1998-2009)

Awards

EPA Level | Scientific And Technological Achievement Award. 2005. Given by EPA for an exceptionally
high-quality research of national significance, recognizable as a major scientific/technological
achievement within its discipline or field of study

Daniel Bell Award. 2005. Given by Abt Associates each year for outstanding social science research.

Selected Publications

Delucchi, M.A. & D.R. McCubbin (2010). The external costs of transport in the U.S. A. de Palma, R.
Lindsey, E. Quinet, and R. Vickerman, editors. Handbook of Transport Economics. Northamptom, MA:
Edward Elgar Publishing.
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Davidson, K, A. Hallberg, B. Hubbell, D.R. McCubbin (2007). Analysis of PM2.5 Using the Environmental
Benefits Mapping and Analysis Program (BenMAP). Journal of Toxicology and Environmental Health,
Part A, 70: 332-346.

Hubbell, B., Hallberg, D.R. McCubbin, E. Post (2005). Health related benefits of attaining the eight-hour
ozone standard. Environmental Health Perspectives, 113(1): 73-82.

McCubbin, D. R., & M.A. Delucchi (2003). The health effects of motor vehicle-related air pollution.
David Hensher & Ken Button, editors. Handbooks in Transport. Volume 4: Transport and Environment.
Sydney, Australia: Institute of Transport Studies.

Murphy, J., M.A. Delucchi, & D.R. McCubbin (2002). The health and visibility cost of air pollution: A
comparison of estimation methods. Journal of Environmental Management, 64: 139-152.

McCubbin, D. R., B.J. Apelberg, S. Roe, & F. Divita Jr. (2002). Livestock ammonia management and
particulate-related health benefits. Environmental Science & Technology, 36(6): 1141-1146.

Murphy, J., M.A. Delucchi, D.R. McCubbin, & J. Kim (1999). The cost of crop losses caused by ozone air
pollution from motor vehicles. Journal of Environmental Management, 55: 273-289.

McCubbin, D. R., & M.A. Delucchi (1999). The cost of the health effects of air pollution from motor
vehicles. Journal of Transport Economics and Policy, 33(part 3): 253-286.
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